Где находится мембрана в клетке. Строение и функции плазматических мембран

Клеточная мембрана – это структура, покрывающая клетку снаружи. Её так же называют цитолемма или плазмолемма.

Данное образование построено из билипидного слоя (бислоя) со встроенными в него белками. Углеводы, входящие в состав плазмолеммы, находятся в связанном состоянии.

Распределение основных компонентов плазмолеммы выглядит следующим образом: более половины химического состава приходится на белки, четверть занимают фосфолипиды, десятую часть – холестерол.

Клеточная мембрана и ее виды

Мембрана клетки – тонкая пленка, основу которой составляют пласты липопротеидов и белков.

По локализации выделяют мембранные органеллы, имеющие некоторые особенности в растительных и животных клетках:

  • митохондрии;
  • ядро;
  • эндоплазматический ретикулум;
  • комплекс Гольджи;
  • лизосомы;
  • хлоропласты (в растительных клетках).

Также есть внутренняя и наружная (плазмолемма) клеточная мембрана.

Строение клеточной мембраны

Клеточная мембрана содержит углеводы, которые покрывают ее, в виде гликокаликса. Это надмембранная структура, которая выполняет барьерную функцию. Белки, расположенные здесь, находятся в свободном состоянии. Несвязанные протеины участвуют в ферментативных реакциях, обеспечивая внеклеточное расщепление веществ.

Белки цитоплазматической мембраны представлены гликопротеинами. По химическому составу выделяют протеины, включенные в липидный слой полностью (на всем протяжении), – интегральные белки. Также периферические, не достигающие одной из поверхностей плазмолеммы.

Первые функционируют как рецепторы, связываясь с нейромедиаторами, гормонами и другими веществами. Вставочные белки необходимы для построения ионных каналов, через которые осуществляется транспорт ионов, гидрофильных субстратов. Вторые являются ферментами, катализирующими внутриклеточные реакции.

Основные свойства плазматической мембраны

Липидный бислой препятствует проникновению воды. Липиды – гидрофобные соединения, представленные в клетке фосфолипидами. Фосфатная группа обращена наружу и состоит из двух слоев: наружного, направленного во внеклеточную среду, и внутреннего, отграничивающего внутриклеточное содержимое.

Водорастворимые участки носят название гидрофильных головок. Участки с жирной кислотой направлены внутрь клетки, в виде гидрофобных хвостов. Гидрофобная часть взаимодействует с соседними липидами, что обеспечивает прикрепление их друг к другу. Двойной слой обладает избирательной проницаемостью на разных участках.

Так, в середине мембрана непроницаема для глюкозы и мочевины, здесь свободно проходят гидрофобные вещества: диоксид углерода, кислород, алкоголь. Важное значение имеет холестерол, содержание последнего определяет вязкость плазмолеммы.

Функции наружной мембраны клетки

Характеристики функций кратко перечислены в таблице:

Функция мембраны Описание
Барьерная роль Плазмолемма выполняет защитную функцию, предохраняя содержимое клетки от воздействия чужеродных агентов. Благодаря особой организации белков, липидов, углеводов, обеспечивается полупроницаемость плазмолеммы.
Рецепторная функция Через клеточную мембрану происходит активация биологически активных веществ в процессе связывания с рецепторами. Так, иммунные реакции опосредуются через распознавание чужеродных агентов рецепторным аппаратом клеток, локализованным на клеточной мембране.
Транспортная функция Наличие пор в плазмолемме позволяет регулировать поступление веществ внутрь клетки. Процесс переноса протекает пассивно (без затрат энергии) для соединений с низкой молекулярной массой. Активный перенос связан с затратами энергии, высвобождающейся при расщеплении аденозинтрифосфота (АТФ). Данный способ имеет место для переноса органических соединений.
Участие в процессах пищеварения На клеточной мембране происходит осаждение веществ (сорбция). Рецепторы связываются субстратом, перемещая его внутрь клетки. Образуется пузырек, свободно лежащий внутри клетки. Сливаясь, такие пузырьки формируют лизосомы с гидролитическими ферментами.
Ферментативная функция Энзимы, необходимые составляющие внутриклеточного пищеварения. Реакции, требующие участия катализаторов, протекают с участием ферментов.

Какое значение имеет клеточная мембрана

Клеточная мембрана участвует в поддержании гомеостаза за счет высокой селективности поступающих и выходящих из клетки веществ (в биологии это носит название избирательной проницаемости).

Выросты плазмолеммы разделяют клетку на компартменты (отсеки), ответственные за выполнение определенных функций. Специфически устроенные мембраны, соответствующие жидкостно-мозаичной схеме, обеспечивают целостность клетки.

В этой статье будут описаны особенности строения и функционирования клеточной мембраны. Так же называют: плазмолемма, плазмалемма, биомембрана, мембрана клетки, наружная клеточная оболочка, клеточная оболочка. Все изложенные начальные данные понадобятся для четкого понимания течения процессов нервного возбуждения и торможения, принципов работы синапсов и рецепторов.

Плазмолемма представляет собой трехслойную липопротеиновую оболочку, отделяющую клетку от внешней среды. Она также осуществляет управляемый обмен между клеткой и внешней средой.

Биологическая мембрана являет собой ультратонкую бимолекулярную пленку, состоящую из фосфолипидов, белков и полисахаридов. Основные ее функции – барьерная, механическая и матричная.

Основные свойства мембраны клетки:

- Проницаемость мембраны

- Полупроницаемость мембраны

- Избирательная проницаемость мембраны

- Активная проницаемость мембраны

- Управляемая проницаемость

- Фагоцитоз и пиноцитоз мембраны

- Экзоцитоз на мембране клетки

- Наличие электрических и химических потенциалов на мембране клетки

- Изменения электрического потенциала мембраны

- Раздражимость мембраны. Обусловлена она наличием на мембране специфических рецепторов, которые контактируют с сигнальными веществами. В результате этого, зачастую, меняется состояние, как самой мембраны, так и всей клетки. После соединения с лагандами (управляющими веществами), молекулярные рецепторы, расположенные на мембране, запускают биохимические процессы.

- Каталитическая ферментативная активность мембраны клетки. Ферменты действуют как снаружи мембраны клетки, так и изнутри клетки.

Основные функции клеточной мембраны

Основное в работе клеточной мембраны – осуществлять и контролировать обмен между клеткой и межклеточным веществом. Это возможно благодаря проницаемости мембраны. Регулировка же пропускной способности мембраны осуществляется благодаря регулируемой проницаемости клеточной мембраны.

Строение мембраны клетки

Клеточная мембрана трехслойна. Центральный слой – жировой служит, непосредственно, для изоляции клетки. Водорастворимые вещества он не пропускает, только жирорастворимые.

Остальные же слои – нижний и верхний представляют собой белковые образования, разбросанные в виде островков на жировом слое.Между этими островками скрываются транспортёры и ионные канальцы, которые служат именно для транспорта водорастворимых веществ как в саму клетку, так и за ее пределы.

Более подробно, жировая прослойка мембраны состоит из фосфолипидов и сфинголипидов.

Важность ионных канальцев мембраны

Так как через липидную пленку проникают только жирорастворимые вещества: газы, жиры и спирты, а клетке необходимо постоянно вводить и выводить водорастворимые вещества, к которым относятся ионы. Именно для этих целей служат транспортные белковые структуры, образованные двумя другими слоями мембраны.

Подобные белковые структуры состоят из 2 типов белков – каналоформеров, которые формируют отверстия в мембране и белков - транспортеров, которые с помощью ферментов цепляют к себе ипроводят сквозь нужные вещества.

Будьте здоровыми и эффективными для себя!

Среди основных функций клеточной мембраны можно выделить барьерную, транспортную, ферментативную и рецепторную . Клеточная (биологическая) мембрана (она же плазмалемма, плазматическая или цитоплазматическая мембрана) ограждает содержимое клетки или ее органоидов от окружающей среды, обеспечивает избирательную проницаемость для веществ, на ней располагаются ферменты, а также молекулы, способные «улавливать» различные химические и физические сигналы.

Такая функциональность обеспечивается особым строением клеточной мембраны .

В эволюции жизни на Земле клетка вообще могла образоваться лишь после появления мембраны, которая отделила и стабилизировала внутреннее содержимое, не дало ему распасться.

В плане поддержания гомеостаза (саморегуляции относительного постоянства внутренней среды) барьерная функция клеточной мембраны тесно связана с транспортной .

Малые молекулы способны проходить сквозь плазмалемму без всяких «помощников», по градиенту концентрации, т. е. из области с высокой концентрацией данного вещества в область с низкой концентрацией. Так, например, обстоит дело для газов, участвующих в дыхании. Кислород и углекислый газ диффундируют через клеточную мембрану в том направлении, где их концентрация в данный момент меньше.

Поскольку мембрана в основной своей части гидрофобна (из-за двойного липидного слоя), то полярные (гидрофильные) молекулы, даже малых размеров, зачастую не могут сквозь нее проникнуть. Поэтому ряд мембранных белков выполняет функцию переносчиков таких молекул, связываясь с ними и перенося через плазмалемму.

Интегральные (пронизывающие мембрану насквозь) белки часто работают по принципу открывающихся и закрывающихся каналов. Когда какая-либо молекула подходит к такому белку, то он соединяется с ней, и канал открывается. Это вещество или другое проходит через белковый канал, после чего его конформация меняется, и канал закрывается для этого вещества, но может открыться для пропускания другого. По такому принципу работает натрий-калиевый насос, закачивающий в клетку ионы калия и выкачивающий из нее ионы натрия.

Ферментативная функция клеточной мембраны в большей степени реализована на мембранах органоидов клетки. Большинство синтезируемых в клетке белков выполняют ферментативную функцию. «Усаживаясь» на мембрану в определенном порядке, они организуют конвейер, когда продукт реакции, катализируемый одним белком-ферментом, переходит к следующему. Такой «конвейер» стабилизируют поверхностные белки плазмалеммы.

Несмотря на универсальность строения всех биологических мембран (построены по единому принципу, почти одинаковы у всех организмов и у разных мембранных клеточных структур), их химический состав все же может отличаться. Бывают более жидкие и более твердые, на одних больше определенных белков, на других меньше. Кроме того, отличаются и разные стороны (внутренняя и наружная) одной и той же мембраны.

У мембраны, которая окружает клетку (цитоплазматической) на внешней стороне располагается множество углеводных цепей, прикрепленных к липидам или белкам (в результате образуются гликолипиды и гликопротеины). Многие из таких углеводов выполняют рецепторную функцию , будучи восприимчивыми к определенным гормонам, улавливая изменения физических и химических показателей в окружающей среде.

Если, например, гормон соединяется со своим клеточным рецептором, то углеводная часть молекулы-рецептора изменяет свое строение, вслед за ней изменяет строение и связанная с ней белковая часть, пронизывающая мембрану. На следующем этапе в клетке запускаются или приостанавливаются различные биохимические реакции, т. е. меняется ее метаболизм, начинается клеточный ответ на «раздражитель».

Кроме перечисленных четырех функций клеточной мембраны выделяют и другие: матричную, энергетическую, маркировачную, формирование межклеточных контактов и др. Однако их можно рассмотреть как «подфункции» уже рассмотренных.

В 1972 году была выдвинута теория, согласно которой частично проницаемая мембрана окружает клетку и выполняет ряд жизненно важных задач, а строение и функции клеточных мембран являются значимыми вопросами касательно правильного функционирования всех клеток в организме. получила широкое распространение в 17 веке, вместе с изобретением микроскопа. Стало известно, что растительные и животные ткани состоят из клеток, но из-за низкой разрешающей способности прибора невозможно было увидеть какие-то барьеры вокруг животной клетки. В 20-м веке химическая природа мембраны исследовалась более детально, было выяснено, что ее основу составляют липиды.

Строение и функции клеточных мембран

Клеточная мембрана окружает цитоплазму живых клеток, физически отделяя внутриклеточные компоненты от внешней среды. Грибы, бактерии и растения также имеют клеточные стенки, которые обеспечивают защиту и препятствуют прохождению крупных молекул. Клеточные мембраны также играют роль в становлении цитоскелета и прикреплении к внеклеточному матриксу других жизненно важных частиц. Это нужно для того, чтобы удерживать их вместе, формируя ткани и органы организма. Особенности строения клеточной мембраны включают проницаемость. Основной функцией является защита. Мембрана состоит из фосфолипидного слоя со встроенными белками. Эта часть участвует в таких процессах, как клеточная адгезия, ионная проводимость и сигнальные системы и служит в качестве поверхности крепления для нескольких внеклеточных структур, в том числе стенки, гликокаликса и внутреннего цитоскелета. Мембрана также сохраняет потенциал клетки, работая как селективный фильтр. Она является селективно проницаемой для ионов и органических молекул и управляет перемещением частиц.

Биологические механизмы с участием клеточной мембраны

1. Пассивная диффузия: некоторые вещества (малые молекулы, ионы), такие как двуокись углерода (СО2) и кислорода (О2), могут проникать через плазматическую мембрану путем диффузии. Оболочка действует как барьер для определенных молекул и ионов, они могут концентрироваться по обе стороны.

2. Трансмембранный белок каналов и транспортеров: питательные вещества, такие как глюкоза или аминокислоты, должны попасть в клетку, а некоторые продукты обмена веществ должны ее покинуть.

3. Эндоцитоз - это процесс, при котором поглощаются молекулы. В плазматической мембране создается небольшая деформация (инвагинация), в которой вещество, подлежащее транспортировке, заглатывается. Это требует энергии и, таким образом, является формой активного транспорта.

4. Экзоцитоз: происходит в различных клетках для удаления непереваренных остатков веществ, принесенных эндоцитозом, чтобы секретировать вещества, такие как гормоны и ферменты, и транспортировать вещество полностью через клеточный барьер.

Молекулярная структура

Клеточная мембрана - это биологическая оболочка, состоящая преимущественно из фосфолипидов и отделяющая содержание всей клетки от внешней среды. Процесс образования происходит самопроизвольно при нормальных условиях. Чтобы понять этот процесс и правильно описать строение и функции клеточных мембран, а также свойства, необходимо оценить характер фосфолипидных структур, для которых является свойственной структурная поляризация. Когда фосфолипиды в водной среде цитоплазмы достигают критической концентрации, они объединяются в мицеллы, которые являются более стабильными в водной среде.

Мембранные свойства

  • Стабильность. Это значит, что после образования распад мембраны является маловероятным.
  • Прочность. Липидная оболочка достаточно надежная, чтобы предотвратить прохождение полярного вещества, через образованную границу не могут пройти как растворенные вещества (ионы, глюкоза, аминокислоты), так и гораздо более крупные молекулы (белки).
  • Динамичный характер. Это, пожалуй, наиболее важное свойство, если рассматривать строение клетки. Клеточная мембрана может подвергаться различным деформациям, может складываться и сгибаться и при этом не разрушиться. При особых обстоятельствах, например, при слиянии везикул или бутонизации, она может быть нарушена, но только на время. При комнатной температуре ее липидные составляющие находятся в постоянном, хаотическом движении, образуя стабильную текучую границу.

Жидкая мозаичная модель

Говоря про строение и функции клеточных мембран, важно отметить, что в современном представлении мембрана как жидкая мозаичная модель, была рассмотрена в 1972 году учеными Сингером и Николсоном. Их теория отражает три основные особенности структуры мембраны. Интегральные способствуют мозаичным шаблоном для мембраны, и они способны на боковое движение в плоскости из-за изменчивой природы липидной организации. Трансмембранные белки являются также потенциально мобильными. Важной особенностью структуры мембраны является ее асимметрия. Что представляет собой строение клетки? Клеточная мембрана, ядро, белки и так далее. Клетка является основной единицей жизни, и все организмы состоят из одной или многих клеток, каждая их которых имеет естественный барьер, отделяющий ее от окружающей среды. Эта внешняя граница ячейки также называется плазматической мембраной. Она состоит из четырех различных типов молекул: фосфолипиды, холестерин, белки и углеводы. Жидкая мозаичная модель описывает структуру клеточной мембраны следующим образом: гибкая и эластичная, по консистенции напоминает растительное масло, так что все отдельные молекулы просто плавают в жидкой среде, и они все способные двигаться вбок в пределах этой оболочки. Мозаика представляет собой что-то, что содержит много разных деталей. В плазматической мембране она представлена фосфолипидами, молекулами холестерина, белками и углеводами.

Фосфолипиды

Фосфолипиды составляют основную структуру клеточной мембраны. Эти молекулы имеют два различных конца: голову и хвост. Головной конец содержит фосфатную группу и является гидрофильным. Это значит, что он притягивается к молекулам воды. Хвост состоит из водорода и атомов углерода, называемых цепочками жирных кислот. Эти цепи гидрофобны, они не любят смешиваться с молекулами воды. Этот процесс напоминает то, что происходит, когда вы льете растительное масло в воду, то есть оно в ней не растворяется. Особенности строения клеточной мембраны связаны с так называемым липидным бислоем, который состоит из фосфолипидов. Гидрофильные фосфатные головы всегда располагаются там, где есть вода в виде внутриклеточной и внеклеточной жидкости. Гидрофобные хвосты фосфолипидов в мембране организованы таким образом, что держат их подальше от воды.


Холестерин, белки и углеводы

Услышав слово "холестерин", люди обычно думают, что это плохо. Однако на самом деле холестерин является очень важным компонентом клеточных мембран. Его молекулы состоят из четырех колец водорода и атомов углерода. Они гидрофобны и встречаются среди гидрофобных хвостов в липидном би-слое. Их важность заключается в поддержании консистенции, они укрепляют мембраны, предотвращая пересечение. Молекулы холестерина также держат фосфолипидные хвосты от вступления в контакт и твердевания. Это гарантирует текучесть и гибкость. Мембранные белки выполняют функции ферментов по ускорению химических реакций, выступают в качестве рецепторов для специфических молекул или транспортируют вещества через клеточную мембрану.

Углеводы, или сахариды, встречаются только на внеклеточной стороне мембраны клетки. Вместе они образуют гликокаликс. Он обеспечивает амортизацию и защиту плазматической мембраны. На основе структуры и типа углеводов в гликокаликсе организм может распознавать клетки и определять, должны ли они быть там или нет.

Мембранные белки

Строение клеточной мембраны невозможно представить без такого значимого компонента, как белок. Несмотря на это, они могут значительно уступать по размерам другой важной составляющей - липидам. Существует три вида основных мембранных белков.

  • Интегральные. Они полностью охватывают би-слой, цитоплазму и внеклеточную среду. Они выполняют транспортную и сигнализирующую функцию.
  • Периферические. Белки прикрепляются к мембране при помощи электростатических или водородных связей в их цитоплазматических или внеклеточных поверхностях. Они участвуют в основном как средство крепления для интегральных белков.
  • Трансмембранные. Они выполняют ферментативную и сигнальную функции, а также модулируют основную структуру липидного би-слоя мембраны.

Функции биологических мембран

Гидрофобный эффект, который регламентирует поведение углеводородов в воде, контролирует структуры, образованные посредством мембранных липидов и мембранных белков. Многие свойства мембран даруются носителями липидных би-слоев, образующими базовую структуру для всех биологических мембран. Интегральные мембранные белки частично спрятаны в липидном би-слое. Трансмембранные белки имеют специализированную организацию аминокислот в их первичной последовательности.

Периферические мембранные белки очень похожи на растворимые, но они также привязаны к мембранам. Специализированные клеточные мембраны имеют специализированные функции клеток. Как строение и функции клеточных мембран оказывают влияние на организм? От того, как устроены биологические мембраны, зависит обеспечение функциональности всего организма. Из внутриклеточных органелл, внеклеточного и межклеточных взаимодействий мембран создаются структуры, необходимых для организации и выполнения биологических функций. Многие структурные и функциональные особенности являются общими для бактерий, и оболочечных вирусов. Все биологические мембраны построены на липидном би-слое, что обуславливает наличие ряда общих характеристик. Мембранные белки обладают множеством специфических функций.

  • Контролирующая. Плазматические мембраны клеток определяют границы взаимодействия клетки с окружающей средой.
  • Транспортная. Внутриклеточные мембраны клеток разделены на несколько функциональных блоков с различной внутренней композицией, каждая из которых поддерживается необходимой транспортной функцией в сочетании с проницаемостью управления.
  • Сигнальная трансдукция. Слияние мембран обеспечивает механизм внутриклеточного везикулярного оповещения и препятствования разного рода вирусам свободно проникать в клетку.

Значение и выводы

Строение наружной клеточной мембраны оказывает влияние на весь организм. Она играет важную роль в защите целостности, позволяя проникновение только выбранных веществ. Это также хорошая база для крепления цитоскелета и клеточной стенки, что помогает в сохранении формы клетки. Липиды составляют около 50% массы мембраны большинства клеток, хотя этот показатель варьируется в зависимости от типа мембраны. Строение наружной клеточной мембраны млекопитающих являются более сложным, там содержатся четыре основных фосфолипида. Важным свойством липидных би-слоев является то, что они ведут себя как двумерные жидкости, в которой отдельные молекулы могут свободно вращаться и перемещаться в боковых направлениях. Такая текучесть - это важное свойство мембран, которое определяется в зависимости от температуры и липидного состава. Благодаря углеводородной кольцевой структуре холестерин играет определенную роль в определении текучести мембран. биологических мембран для малых молекул позволяет клетке контролировать и поддерживать ее внутреннюю структуру.

Рассматривая строение клетки (клеточная мембрана, ядро и так далее), можно сделать вывод о том, что организм - это саморегулирующая система, которая без посторонней помощи не сможет себе навредить и всегда будет искать пути для восстановления, защиты и правильного функционирования каждой клеточки.

Клеточная мембрана

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофобным «головкам» фосфолипидов, а присоединённые к ним линии - гидрофильным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - молекулы холестерола Жёлто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс

Биологическая мембрана включает и различные белки : интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов .

Функции

  • барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов . Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза .
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия , при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза , которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
  • матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки , а у животных - межклеточное вещество .
  • энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны , циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • ферментативная - мембранные белки нередко являются ферментами . Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов .
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса .
  • маркировка клетки - на мембране есть антигены , действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды , гликолипиды и холестерол . Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы , отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть , аппарат Гольджи , лизосомы , вакуоли , пероксисомы ; к двумембранным - ядро , митохондрии , пластиды . Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних - активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия .

См. также

Литература

  • Антонов В. Ф., Смирнова Е. Н., Шевченко Е. В. Липидные мембраны при фазовых переходах. - М .: Наука, 1994.
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). - 1-е издание. - М .: Мир, 1997. - ISBN 5-03-002419-0
  • Иванов В. Г., Берестовский Т. Н. Липидный бислой биологических мембран. - М .: Наука, 1982.
  • Рубин А. Б. Биофизика, учебник в 2 тт . - 3-е издание, исправленное и дополненное. - М .: издательство Московского университета, 2004. -

Top