Как найти угловой коэффициент? Пример нахождения коэффициента корреляции.

На объем продаж. Делим 900 тыс. рублей на 156000 тыс. рублей, получаем 0,005769. Это и есть рентабельность предприятия за рассматриваемый период.

Обратите внимание

Аналогичным образом можно вычислять коэффициенты ликвидности, капитализации, активности и прибыльности любой организации. Имейте ввиду, что на практике специалистами используются десятки и сотни различных финансовых коэффициентов. Не дайте сбить себя с толку - в основном все они являются производными от коэффициентов вышеуказанных категорий и вычисляются аналогично.

Полезный совет

Потренируйтесь вычислять коэффициенты рентабельности для любых других данных из отчета о прибылях и убытках предприятия. Также можно брать за основу данные из балансового отчета компании.

Существует масса определений рентабельности: доходность вложенного капитала, прибыльность хозяйственной деятельности, относительный показатель экономической эффективности и т.д. Говоря проще, показывает, сколько предприятие заработало на каждый вложенный рубль, например, рентабельность 10% говорит о том, что на каждый вложенный рубль предприятие получило 10 копеек прибыли.

Инструкция

Зачем нужно вычислять рентабельность предприятия и отдельных направлений его деятельности? Дело в том, что наличие прибыли как таковой не позволяет судить об эффективности деятельности предприятия. Предположите, что предприятие получило прибыль в размере 1 млн. рублей. Хорошо ли это? Да, если речь идет о небольшом предприятии, арендующем офис и имеющее единственный в виде . Но если речь идет о крупном заводе, то с в 1 млн.руб. предприятие еле держится на плаву. Поэтому в и существует рентабельности.

Как вычислить рентабельность ? Все зависит от того, какую именно рентабельность вы хотите вычислить.
Вычислите рентабельность капитала (активов) одним из следующих способов:
- отношение чистой прибыли к акционерному (собственному) капиталу;
- отношение чистой прибыли к инвестиционному капиталу;
- отношение чистой прибыли ко всем предприятия.

Вычислите рентабельность продаж, произведя следующие расчеты:
- Р1 = К1/N, где К1 - прибыль от продаж; N - выручка от продаж в ценах;
- Р1 = К1/N, где К1 - прибыль от продаж; N - выручка от продаж в отпускных ценах;
- Р3 = К3/N, где К3- чистая (нераспределенная) прибыль.
Вычислите общую рентабельность предприятия, определив отношение чистой прибыли к затратам, расходу ресурсов предприятия.

Источники:

  • для чего нужна рентабельность

Эпюра - графическая схема решения задачи сопромата при расчете прочностных характеристик и действующих нагрузок на материал. Она отражает зависимость изгибающих моментов от длины нагруженного участка какого-либо элемента. Это может быть балка или ферма, другая несущая конструкция.

Инструкция

Обычно строят эпюры крутящих и изгибающих моментов, как наиболее опасных для прочностных характеристик конструкций. При необходимости изучения распределения продольных и поперечных сил по длине нагруженного элемента, рассчитывают и строят также эпюры продольных Q и поперечных сил N.

Строить эпюру начинают с решения задач по теоретической механике и сопромату. Установите характер рассматриваемого элемента и тип его связей (способы закрепления в пространстве). При этом учитывайте следующие основные : - система, находящаяся в покое, находится в равновесии;- сумма сил, действующих на уравновешенную систему равна 0, также как и сумма моментов, создаваемых этими силами;- момент - произведение силы на плечо, перпендикулярное силе расстояние от точки приложения силы до точки момента;- направленная вверх сила - положительна, направленная вниз – отрицательна;- если система при приложении момента повернуться по часовой стрелке – момент положительный, если против – отрицательный.

Возьмите карандаш, линейку, бумагу. Нарисуйте с соблюдением масштаба схематичное изображение рассматриваемого элемента (стержень) и его соединения ().

В соответствии с расчетами укажите точки приложения и направления сил, их величину. Укажите точку приложения момента, его направление.

Разбейте элемент на участки (сечения), укажите в них поперечные силы, постройте для них эпюры. Определите в сечениях изгибающие моменты. Постройте эпюры изгибающих моментов.

Источники:

  • как построить эпюры

Физики университета Лейчестера (Великобритания), используя законы аэродинамики, вычислили скорость главного героя комиксов и фильмов Бэтмена. Для расчетов они проанализировали эпизод фильма К. Нолана «Начало» (2005), где человек-летучая мышь, раскрыв свой плащ, летит вниз с небоскреба.

Рассмотрев эпизод полета Бэтмена с высокого здания, будущие ученые Дэвид Маршалл и его друзья с факультета физики и астрономии рассчитали величины сил, действующих на человека во время такого полета. За основу расчетов была принята условная масса супергероя в 90 килограммов, высота здания - 150 метров. Студенты-физики вычислили также размах специальной накидки Бэтмена. Когда эта накидка встречает поток воздуха, она выпрямляется и делается жесткой, при этом ее размах составляет 4,7 м.

Все расчеты были сделаны в соответствии с законами аэродинамики. По полученным данным студенты сделали вывод, что подъемной силы плаща - накидки будет достаточно для поддержания Бэтмена в воздухе, при этом скорость полета супергероя составит от 60 до 100 километров в час.

Согласно этим любопытным вычислениям, при прыжке вниз со здания высотой 150 метров человек-летучая мышь пролетит 350 метров за три секунды, при этом его максимальная скорость составит 109 километров в час, а скорость приземления – 80 километров в час. После выполнения всех расчетов юные физики сделали вывод, что Бэтмен действительно может летать с помощью своего плаща, однако резкое приземление будет опасным для жизни из-за высокой скорости в последние секунды полета - супергерой просто врезался бы в землю.

Как сказал один из авторов расчетов: «Если бы Бэтмен хотел выжить после такого полета, ему бы определенно понадобился плащ побольше». Физики также посоветовали создателям фильма придумать реактивную тягу для продления скорости полета и снижения скорости приземления в том случае, если они хотят оставить размер накидки Бэтмена неизменным.

Эта работа четырех студентов-физиков под названием «Trajectory of a Falling Batman» («Траектория падающего Бэтмена») была опубликована в декабре 2011 года в журнале "Journal of Special Physics Topics" («Специальные вопросы физики») и вызвала неоднозначную реакцию общественности.

Источники:

  • Тормоза для Бэтмена в 2019

Суперкомпенсация – основная цель практически любого похода в тренажерный зал. Это тот период времени, за который мышцы спортсмена не просто восстанавливаются после тренировки, а становятся сильнее, выносливее, объемнее, чем они были раньше.

Суперкомпенсация: что это?

После окончания спортивной тренировки утомленные мышцы постепенно начинают восстанавливаться. Этот длительный процесс можно разделить на несколько стадий. В течение первой стадии мускулы возвращаются к дотренировочному уровню. На следующей стадии происходит рост мышц, их работоспособность увеличивается. Период, за который мышцы не просто отдохнули после тренировки, но и стали сильнее – и есть суперкомпенсациия. Достигнув своего пика, спортивные показатели начинают снижаться и постепенно возвращаются к дотренировочному уровню.

Пик суперкомпенсации – это идеальный момент для следующего похода в спортзал. Если дать нагрузку мышцам, которые не успели максимально восстановиться, эффект от тренировки будет незначительным, а то и вовсе негативным: уставшим мускулам грозит перетренированность. Эффективность тренинга снизиться и в том случае, если упустить подходящий момент: на пике суперкомпенсации работоспособность мышц может увеличиваться на 10-20%, что дает возможность спортсмену увеличить нагрузку.

Это – важный момент, поскольку только постоянное увеличение нагрузки может обеспечить стабильный рост спортивных показателей. Без увеличения нагрузки спортсмен сможет только поддерживать уже достигнутый уровень.

Как определить идеальный момент для тренировки?

К сожалению, точно определить период суперкомпенсации невозможно. Этот процесс протекает индивидуально и зависит от множества факторов: обмена веществ спортсмена, исходного уровня тренированности, интенсивности нагрузки, питания, общего состояния организма. К тому же разные функции и группы мышц восстанавливаются по-разному и период суперкомпенсации для них различный.

Необходимо учесть и такой нюанс: если тренировка не была интенсивной и мышцы не получили достаточной нагрузки, суперкомпенсации не будет, работоспособность не увеличится. В случае же чрезмерной нагрузки возникает перетренированность, и, как следствие, остановка развития спортивных показателей, а то и вовсе регресс.

Циклический тренинг – решение проблемы суперкомпенсации

Решение проблемы суперкомпенсации – грамотная тренировочная программа, составленная с учетом индивидуальных особенностей спортсмена. Один из важнейших принципов такой программы – циклическое чередование интенсивности нагрузки, которую получают различные группы мышц.

Суть циклировния в тренинге сводится к тому, чтобы разделить спортивную программу на отдельные периоды, которые повторяются с разной степенью интенсивности: легкий, средний, высокий. Идеальный вариант – тренинг в сплите, когда программа разбивается на несколько тренировочных дней, в ходе которых спортсмен прорабатывает отдельную группу мышц.

Стоит также учесть, что для разных параметров (таких как сила, выносливость, объем мышц и т.п.) период суперкомпенсации различный и требует нагрузок разной интенсивности. Поэтому именно сплит-тренировки с циклическим изменением нагрузки обеспечивает равномерное развитие всех тренируемых параметров.

Источники:

  • Изображение: как вычислить период суперкомпенсации
  • Суперкомпенсация: чтобы тело было супер!
  • Суперкомпенсация
  • Роль суперкомпенсации в бодибилдинге

В математике одним из параметров, описывающих положение прямой на декартовой плоскости координат, является угловой коэффициент этой прямой. Этот параметр характеризует наклон прямой к оси абцисс. Чтобы понять, как найти угловой коэффициент, сначала вспомним общий вид уравнения прямой в системе координат XY.

В общем виде любую прямую можно представить выражением ax+by=c, где a, b и c - произвольные действительные числа, но обязательно a 2 + b 2 ≠ 0.

Подобное уравнение с помощью несложных преобразований можно довести до вида y=kx+d, в котором k и d - действительные числа. Число k является угловым коэффициентом, а само уравнение прямой подобного вида называется уравнением с угловым коэффициентом. Получается, что для нахождения углового коэффициента, необходимо просто привести исходное уравнение к указанному выше виду. Для более полного понимания рассмотрим конкретный пример:

Задача: Найти угловой коэффициент линии, заданной уравнением 36x - 18y = 108

Решение: Преобразуем исходное уравнение.

Ответ: Искомый угловой коэффициент данной прямой равен 2.

В случае, если в ходе преобразований уравнения мы получили выражение типа x = const и не можем в результате представить y в виде функции x, то мы имеем дело с прямой, параллельной оси Х. Угловой коэффициент подобной прямой равен бесконечности.

Для прямых, которых выражены уравнением типа y = const, угловой коэффициент равняется нулю. Это характерно для прямых, параллельных оси абцисс. Например:

Задача: Найти угловой коэффициент линии, заданной уравнением 24x + 12y - 4(3y + 7) = 4

Решение: Приведем исходное уравнение к общему виду

24x + 12y - 12y + 28 = 4

Из полученного выражения выразить y невозможно, следовательно угловой коэффициент данной прямой равен бесконечности, а сама прямая будет параллельна оси Y.

Геометрический смысл

Для лучшего понимания обратимся к картинке:

На рисунке мы видим график функции типа y = kx. Для упрощения примем коэффициент с = 0. В треугольнике ОАВ отношение стороны ВА к АО будет равно угловому коэффициенту k. Вместе с тем отношение ВА/АО - это тангенс острого угла α в прямоугольном треугольнике ОАВ. Получается, что угловой коэффициент прямой равняется тангенсу угла, который составляет эта прямая с осью абцисс координатной сетки.

Решая задачу, как найти угловой коэффициент прямой, мы находим тангенс угла между ней и осью Х сетки координат. Граничные случаи, когда рассматриваемая прямая параллельна осям координат, подтверждают вышенаписанное. Действительно для прямой, описанной уравнением y=const, угол между ней и осью абцисс равен нулю. Тангенс нулевого угла также равен нулю и угловой коэффициент тоже равен нулю.

Для прямых, перпендикулярных оси абцисс и описываемых уравнением х=const, угол между ними и осью Х равен 90 градусов. Тангенс прямого угла равен бесконечности, так же и угловой коэффициент подобных прямых равен бесконечности, что подтверждает написанное выше.

Угловой коэффициент касательной

Распространенной, часто встречающейся на практике, задачей является также нахождение углового коэффициента касательной к графику функции в некоторой точке. Касательная - это прямая, следовательно к ней также применимо понятие углового коэффициента.

Чтобы разобраться, как найти угловой коэффициент касательной, нам будет необходимо вспомнить понятие производной. Производная от любой функции в некоторой точке - это константа, численно равная тангенсу угла, который образуется между касательной в указанной точке к графику этой функции и осью абцисс. Получается, что для определения углового коэффициента касательной в точке x 0 , нам необходимо рассчитать значение производной исходной функции в этой точке k = f"(x 0). Рассмотрим на примере:

Задача: Найти угловой коэффициент линии, касательной к функции y = 12x 2 + 2xe x при х = 0,1.

Решение: Найдем производную от исходной функции в общем виде

y"(0,1) = 24 . 0,1 + 2 . 0,1 . e 0,1 + 2 . e 0,1

Ответ: Искомый угловой коэффициент в точке х = 0,1 равен 4,831

Новички сталкиваются с проблемами там, где для опытных и успешных бетторов нет никаких препятствий. Начинающие игроки не могут регулярно находить адекватные ставки с коэффициентом около двух. В этой статье разберем варианты ставок с котировками от 1.80 до 2.20.

  1. Коэффициент 2.0 – довольно высокий. Чтобы зарабатывать при игре на таких котировках, достаточно показывать 53-55% проходимости.
  2. Коэффициент 2.0 – не чересчур большой, если котировки в конкретной игре отражают реальную вероятность исхода. Это 50%, без учета маржи букмекера. Находить адекватные события с вероятностью 50 на 50 не настолько трудно, как кажется. Гораздо сложнее взять коэффициент от 2.5.
  3. Многие стратегии ставок предназначены для игры с коэффициентом 2.0. В первую очередь, это финансовые системы «мартингейл» и «догон». Именно поэтому новички часто ищут информацию о том, какие варианты пари с этим коэффициентом можно заиграть.

Для начала откройте линию букмекера и посмотрите виды ставок. В росписи множество рынков с коэффициентом в районе 2.0, но какие из них адекватные?

Ниже представлены оптимальные варианты ставок с коэффициентом 2.0. Каждая сделка должна обосновываться и опираться на проведенный анализ, а не делаться вслепую, исходя из значений котировок.

Чистая победа

Стандартный чистый выигрыш. Когда на успех команды предлагают поставить за 2.0, то она фаворит, но скрытый. На триумф выраженного фаворита значение меньше. Если анализ говорит об уверенной победе одного из соперника, смело заигрывайте этот исход.

Фора (-1)

Когда фаворит явный (коэф. 1.3-1.7), и разбор говорит о разгроме, а не только выигрыше, возьмите отрицательную фору за двойку.

Фора (0)

При равных шансах соперников, нулевая фора на каждую команду оценивается одинаковыми котировками. Обычно, по 1.85-1.95, без учета маржи. Если думаете, что команда наверняка не проиграет, а скорее даже победит, то фора ноль с коэффициентом около двух – отличный вариант в плане доходности и рисков.

Фора (+1), (+1.5) и (+2)

Бывают поединки, в которых у аутсайдера имеются хорошие шансы на ничью или минимальное поражение. Целесообразно взять плюсовую фору. В росписи редко можно найти достойные варианты с положительной форой на андердога.

Гол команды

Это ставка «команда забьет» или ИТБ (0.5). Букмекеры часто дают на гол аутсайдера коэффициент близок к двум. Встречаются поединки, когда такая сделка оправдана. Ставьте, если у андердога есть атакующий потенциал, а контора переоценивает надежность защитной линии фаворита.

Индивидуальный тотал больше (1)

Ставка на ИТБ (1) с коэф. 2.0 возможна в противостоянии равных соперников и матчах, где фаворит не ярковыраженный. Если более слабая команда выступает при родных болельщиках, она способна забивать даже лидерам чемпионата. Главное, подкрепляйте выбор фактами.

Заиграть ИТБ (1) можно и в играх, когда прогнозируется много голов. Преимущество ставки – она не привязана к результату, ведь даже если команда уступит 3:2, сделка все равно окажется успешной. Определите потенциал команды в дуэли с конкретным противником.

Индивидуальный тотал больше (1.5) и (2.0)

Больший тотал. Естественно, это ставка на явного фаворита, когда предсказываете голевую феерию. Здесь важно учесть риски. Просчитайте, есть ли у футболистов мотивация забить два и больше голов. Вдруг их устроит минимальная победа или соперник закроется настолько, что пропустит максимум раз?

Тотал больше/меньше (2.5)

Стандартное значение тотала. В большинстве поединков на оба тотала дают котировки, близкие к двум. Если анализ указывает в пользу определенной стороны, то ставка вполне неплохая. Главное, аргументировать выбор.

Помните, что общий тотал матча – более опасный исход, нежели те, которые мы рассмотрели ранее.

Тотал меньше/больше (2.0)

Когда в конторе ожидается малорезультативная встреча, то основной тотал опускается к двум. Если вы согласны с мнением аналитиков БК и не просматриваете больше одного гола, заигрывайте ТМ (2).

ТБ (2) в основной росписи обычно встречается в незабивных чемпионатах, например, РФПЛ и ФНЛ, где букмекеры порой предлагают даже ТБ (1.5). Я нередко нахожу заниженные тоталы и зарабатываю на недооценке букмекеров.

Тотал больше/меньше (3)

Основной тотал (3) выставляется там, где ожидается много забитых мячей. Ограничитесь на 3-х голах. Заигрывать ТБ (3.5) и больше – рискованно. В некоторых событиях, в зависимости от проведенного анализа, можно взять ТБ (3) и ТМ (3). С одной стороны вы увеличите коэффициент, а с другой – снизите риски. ТБ (3) – это тот же ТБ (2.5), просто с возможность возврата.

Обе забьют

Ставка, вероятность которой 50%, независимо от котировок контор. Заигрывайте, если ОЗ оценивается высоким коэффициентом, минимум – 1.85. Но лучше рассмотрите другие, менее рискованные исходы.

ОЗ + ТБ (2.5)

Это сдвоенная ставка, состоящая с обе забьют и тотала. Исход логично заигрывать, когда есть уверенность в ОЗ и верхнем тотале. Однако в отдельности эти ставки оцениваются котировками 1.7-1.8, или еще меньше. А за комбинированный вариант дается уже 1.9-2.1.

Конечно, в линии есть еще много исходов с коэффициентом 2.0, но чаще всего – это неоправданные и рискованные ставки. Не рекомендуется брать крупные форы, тоталы, комбинированные пари и прочее.

Резюме

Коэффициент около двух позволяет получать прибыль, даже если проходимость чуть выше 50%. С мизерными котировками уровень проходимости должен вырасти в 2-3 раза. Часто легче показать 55% проходимости с котировками 1.8-2.2, нежели 80% с коэффициентом 1.25.

Теперь вам известны варианты, как взять коэффициент около двух. Ничего сложного в этом нет. Главное, анализируйте события и оправдывайте каждую ставку.

Где x·y , x , y - средние значения выборок; σ(x), σ(y) - среднеквадратические отклонения.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b: , где σ(x)=S(x), σ(y)=S(y) - среднеквадратические отклонения, b - коэффициент перед x в уравнении регрессии y=a+bx .

Другие варианты формул:
или

К xy - корреляционный момент (коэффициент ковариации)

Линейный коэффициент корреляции принимает значения от –1 до +1 (см. шкалу Чеддока). Например, при анализе тесноты линейной корреляционной связи между двумя переменными получен коэффициент парной линейной корреляции, равный –1 . Это означает, что между переменными существует точная обратная линейная зависимость.

Геометрический смысл коэффициента корреляции : r xy показывает, насколько различается наклон двух линий регрессии: y(x) и х(у) , насколько сильно различаются результаты минимизации отклонений по x и по y . Чем больше угол между линиями, то тем больше r xy .
Знак коэффициента корреляции совпадает со знаком коэффициента регрессии и определяет наклон линии регрессии, т.е. общую направленность зависимости (возрастание или убывание). Абсолютная величина коэффициента корреляции определяется степенью близости точек к линии регрессии.

Свойства коэффициента корреляции

  1. |r xy | ≤ 1;
  2. если X и Y независимы, то r xy =0, обратное не всегда верно;
  3. если |r xy |=1, то Y=aX+b, |r xy (X,aX+b)|=1, где a и b постоянные, а ≠ 0;
  4. |r xy (X,Y)|=|r xy (a 1 X+b 1 , a 2 X+b 2)|, где a 1 , a 2 , b 1 , b 2 – постоянные.

Инструкция . Укажите количество исходных данных. Полученное решение сохраняется в файле Word (см. Пример нахождения уравнения регрессии). Также автоматически создается шаблон решения в Excel . .

Количество строк (исходных данных)
Заданы итоговые значения величин (∑x, ∑x 2 , ∑xy, ∑y, ∑y 2)


В математических описаниях используется термин «числовой коэффициент », в частности, при работе с буквенными выражениями и выражениями с переменными удобно использовать понятие числового коэффициента выражения. В этой статье мы дадим определение числового коэффициента выражения и разберем примеры его нахождения.

Навигация по странице.

Определение числового коэффициента, примеры

В учебнике Н. Я. Виленкина математика для 6 классов дается следующее определение числового коэффициента выражения .

Определение.

Если буквенное выражение является произведением одной или нескольких букв и одного числа, то это число называется числовым коэффициентом выражения .

К слову, числовой коэффициент часто называют просто коэффициентом.

Озвученное определение позволяет привести примеры числовых коэффициентов выражений . Для начала рассмотрим произведение числа 3 и буквы a вида 3·a . Число 3 - это числовой коэффициент этого выражения по определению. Другой пример: в произведении x·y·0,2·x·x·z единственным числовым множителем является 0,2 , она и является числовым коэффициентом этого выражения.

А теперь приведем контр пример. Число 3 не является числовым коэффициентом выражения 3·x+y , так как исходное выражение не является произведением. Зато это число 3 является числовым коэффициентом первого из слагаемых в исходном выражении.

А в произведении 5·a·2·b·3·c содержится не одно, а три числа. Для определения числового коэффициента этого выражения, его нужно преобразовать в произведение, содержащее единственный числовой множитель. Как это делается, мы разберемся в следующем пункте этой статьи, в этом заключается процесс .

Стоит отметить, что произведения одинаковых букв могут быть записаны в виде , поэтому определение числового коэффициента подходит и для выражений со степенями. Например, выражение 5·x 3 ·y·z 2 по сути является выражением вида 5·x·x·x·y·z·z , его коэффициентом по определению является число 5 .

Также нужно остановиться на числовых коэффициентах 1 и −1 . Их особенность заключается в том, что они почти никогда не записываются в явном виде. Если выражение представляет собой произведение нескольких букв (без числового множителя) и передним стоит знак плюс, или нет никакого знака, то числовым коэффициентом такого выражения считается число 1 . Если перед произведением нескольких букв стоит знак минус, то коэффициентом такого выражения считается число −1 . Например, числовой коэффициент выражения a·b равен единице (так как a·b можно записать как 1·a·b ), а числовой коэффициент выражения −x равен минус единице (так как −x тождественно равен выражению (−1)·x ).

В дальнейшем определение числового коэффициента расширяется с произведения числа и нескольких букв на произведение одного числа и нескольких буквенных выражений. Так, например, в произведении число −5 можно считать числовым коэффициентом. Аналогично, число 3 есть коэффициент выражения 3·(1+1/x)·x , а - коэффициент выражения .

Нахождение числового коэффициента выражения

Когда выражение представляет собой произведение с одним числовым множителем, этот множитель и является числовым коэффициентом. Когда выражение имеет другой вид, то нахождение его числового коэффициента подразумевает предварительное выполнение некоторых тождественных преобразований , с помощью которых исходное выражение приводится к произведению с одним числовым множителем.

Пример.

Найдите числовой коэффициент выражения −4·x·(−2) .

Решение.

Сгруппируем множители , являющиеся числами, после чего выполним их умножение: −4·x·(−2)=((−4)·(−2))·x=8·x . Теперь отчетливо виден искомый коэффициент, он равен 8 .


Top