Нервная и эндокринная системы в организме человека. Поражение нервной системы при эндокринной патологии

Двустороннее действие нервной и эндокринной систем

Каждая ткань и орган человека функционируют под двойным контролем: автономной нервной системы и гуморальных факторов, в частности гормонов. Этот двойной контроль - основа «надёжности» регуляторных влияний, заданием которых является поддерживать определённый уровень отдельных физических и химических параметров внутренней среды.

Эти системы возбуждают или тормозят различные физиологические функции, чтобы свести к минимуму отклонения этих параметров вопреки значительным колебаниям во внешней среде. Эта деятельность согласовывается с активностью систем, обеспечивающих взаимодействие организма с условиями окружающей среды, которая постоянно изменяется.

Органы человека имеют большое количество рецепторов, раздражение которых вызывает различные физиологические реакции. Вместе с тем к органам подходит много нервных окончаний от центральной нервной системы. Значит, существует двусторонняя связь органов человека с нервной системой: они получают сигналы от центральной нервной системы и, в свою очередь, являются источником рефлексов, которые изменяют состояние их самих и организма в целом.

Эндокринные железы и гормоны, которые они вырабатывают, находятся в тесной взаимосвязи с нервной системой, образуя общий интегральный механизм регуляции.

Связь эндокринных желез с нервной системой является двояконаправленной: железы плотно иннервированы со стороны вегетативной нервной системы, а секрет желез через кровь действует на нервные центры.

Замечание 1

Для поддержания гомеостаза и осуществления основных жизненных функций эволюционно возникли две основные системы: нервная и гуморальная, которые работают взаимосогласованно.

Гуморальная регуляция осуществляется путём образования в эндокринных железах или группах клеток, выполняющих эндокринную функцию (в железах смешанной секреции), и поступления в циркулирующие жидкости биологически активных веществ - гормонов. Для гормонов характерно дистантное действие и способность к влиянию в очень низких концентрациях.

Интеграция нервной и гуморальной регуляции в организме особенно ярко проявляется во время действия стрессовых факторов.

Клетки тела человека объединены в ткани, а те, в свою очередь, в системы органов. В целом всё это представляет единую надсистему организма. Всё огромное количество клеточных элементов при отсутствии в организме сложного механизма регуляции не имело бы возможности функционировать как единое целое.

Система желез внутренней секреции и нервная система играют особенную роль в регуляции. Именно состояние эндокринной регуляции определяет характер всех протекающих в нервной системе процессов.

Пример 1

Под действием андрогенов и эстрогенов формируется инстинктивное поведение, половые инстинкты. Очевидно, что гуморальная система контролирует и нейроны, так же как и другие клетки нашего организма.

Эволюционно нервная система возникла позднее, чем эндокринная. Эти две системы регуляции дополняют друг друга, образуя единый функциональный механизм, который обеспечивает высокоэффективную нейрогуморальную регуляцию, ставя её во главе всех систем, которые согласовывают все жизненные процессы многоклеточного организма.

Это регулирование постоянства внутренней среды в организме, которая происходит по принципу обратной связи, не может выполнять все задания адаптации организма, но очень эффективна для поддержания гомеостаза,.

Пример 2

Кора надпочечников вырабатывает стероидные гормоны в ответ на эмоциональное возбуждение, заболевания, голод и т.п.

Необходима связь между нервной системой и эндокринными железами, чтобы эндокринная система могла реагировать на эмоции, свет, запахи, звуки и т.д.

Регулирующая роль гипоталамуса

Регулирующее влияние ЦНС на физиологическую активность желез осуществляется через гипоталамус.

Гипоталамус афферентным путём связан с другими частями ЦНС, прежде всего со спинным, продолговатым и средним мозгом, таламусом, базальными ганглиями (подкорковые образования, расположенные в белом веществе полушарий большого мозга), гипокампом (центральной структурой лимбической системы), отдельными полями коры больших полушарий и др. Благодаря этому в гипоталамус поступает информация со всего организма; сигналы от экстеро- и интерорецепторов, которые попадают в ЦНС через гипоталамус, передаются эндокринными железами.

Таким образом, нейросекреторные клетки гипоталамуса трансформируют афферентные нервные стимулы в гуморальные факторы с физиологической активностью (в частности у рилизинг - гормоны).

Гипофиз как регулятор биологических процессов

Гипофиз получает сигналы, которые оповещают обо всём происходящем в организме, но прямой связи с внешней средой не имеет. Но для того, чтобы жизнедеятельность организма не нарушалась постоянно факторами внешней среды, должно происходить приспособление организма к изменчивым внешним условиям. О внешних влияниях организм узнаёт получая информацию от органов чувств, передающих её к центральной нервной системе.

Выполняя роль верховной железы внутренней секреции , гипофиз сам управляется центральной нервной системой и, в частности, гипоталамусом. Этот высший вегетативный центр и занимается постоянной координацией и регуляцией деятельности различных отделов мозга и всех внутренних органов.

Замечание 2

Существование всего организма, постоянство его внутренней среды контролируется именно гипоталамусом: обмен белков, углеводов, жиров и минеральных солей, количество воды в тканях, тонус сосудов, частота сердечных сокращений, температура тела и т. п.

Единая нейроэндокринная регуляторная система в организме образуется в результате объединения на уровне гипоталамуса большинства гуморальных и нервных путей регуляции.

Аксоны от расположенных в коре больших полушарий и подкорковых ганглиях нейронов подходят к клеткам гипоталамуса. Они секретируют нейромедиаторы, которые как активируют секреторную активность гипоталамуса, так и тормозят. Нервные импульсы, поступившие из мозга, под влиянием гипоталамуса превращаются в эндокринные стимулы, которые в зависимости от поступающих к гипоталамусу из желез и тканей гуморальных сигналов, усиливаются или ослабевают

Руководство гипоталамусом гипофиза происходит с использованием и нервных связей, и системы кровеносных сосудов. Поступающая в переднюю долю гипофиза кровь обязательно проходит сквозь срединное поднятие гипоталамуса, где происходит её обогащение гипоталамическими нейрогормонами.

Замечание 3

Нейрогормоны имеют пептидную природу и являются частями белковых молекул.

В наше время определили семь нейрогормонов - либеринов («освободителей»), стимулирующих синтез тропных гормонов в гипофизе. А три нейрогормона наоборот, тормозят их выработку – меланостатин, пролактостатин и соматостатин.

Вазопрессин и окситоцин также являются нейрогормонами. Окситоцин стимулирует сокращение гладкой мускулатуры матки во время родов, выработку молока молочными железами. При активном участии вазопрессина происходит регуляция транспорта воды и солей через клеточные мембраны, уменьшается просвет сосудов (повышается кровяное давление). За способность задерживать воду в организме, этот гормон часто называют антидиуретическим гормоном (АДГ). Главная точка приложения АДГ - почечные канальцы, где под его влиянием происходит стимуляция обратного всасывания воды в кровь из первичной мочи.

Нервные клетки ядер гипоталамуса вырабатывают нейрогормоны, а потом собственными аксонами транспортируют их в заднюю долю гипофиза, и уже отсюда эти гормоны способны поступать в кровь, вызывая сложное влияние на системы организма.

Однако гипофиз и гипоталамус не только посылают приказы посредством гормонов, но и сами способны осень точно анализировать сигналы, которые поступают от периферических эндокринных желез. Эндокринная система действует по принципу обратной связи. Если железа внутренней секреции вырабатывает избыток гормонов, то замедляется выделение гипофизом специфического гормона, а если гормона вырабатывается недостаточно, то усиливается выработка соответствующего тропного гормона гипофиза.

Замечание 4

В процессе эволюционного развития механизм взаимодействия гормонов гипоталамуса, гормонов гипофиза и желез внутренней секреции отработан достаточно надёжно. Но если произойдёт сбой работы хотя бы одного звена этой сложной цепи, тут же возникнет нарушение соотношений (количественных и качественных) во всей системе, несущее различные эндокринные заболевания.

Общим для нервных и эндокринных клеток является выработка гуморальных регулирующих факторов. Эндокринные клетки синтезируют гормоны и выделяют их в кровь, а нейроны синтезируют нейротрансмиттеры (большинство из которых является нейроаминами): норадреналин, серотонин и другие, выделяющиеся в синаптические щели. В гипоталамусе находятся секреторные нейроны, совмещающие свойства нервных и эндокринных клеток. Они обладают способностью образовывать как нейроамины, так и олигопептидные гормоны.Выработка гормонов эндокринными органами регулируется нервной системой, с которой они тесно связаны. Внутри эндокринной системы существуют сложные взаимодействия между центральными и периферическими органами этой системы.

68.Эндокринная система. Общая характеристика. Нейроэндокринная система регуляции функций организма. Гормоны: значение для организма, химическая природа, механизм действия, биологические эффекты. Щитовидная железа. Общий план строения, гормоны, их мишени и биологические эффекты.Фолликулы: строение, клеточный состав, секреторный цикл, его регуляция,. Перестройка фолликулов в связи с разной функциональной активностью. Гипоталамо-гипофизарно-тиреоидная система. Тироциты С: источники развития, локализация, строение, регуляция, гормоны, их мишени и биологические эффекты.Развитие щитовидной железы.

Эндокринная система – совокупность структур: органов, частей органов, отдельных клеток, секретирующих в кровь и лимфу гормоны. В эндокринной системе различают центральные и периферические отделы, взаимодействующие между собой и формирующие единую систему.

I. Центральные регуляторные образования эндокринной системы

1.Гипоталамус (нейросекреторные ядра)

2.Гипофиз (адено-, нейрогипофиз)

II. Периферические эндокринные железы

1.Щитовидная железа

2. Околощитовидные железы

3.Надпочечники

III. Органы, объединяющие эндокринные и неэндокринные функции

1.Гонады (семенники, яичники)

2.Плацента

3.Поджелудочная железа

IV. Одиночные гормонпродуцирующие клетки

1.Нейроэндокринные клетки группы неэндокринных органов – APUD-серия

2.Одиночные эндокринные клетки, продуцирующие стероидные и другие гормоны

Среди органов и образований эндокринной системы с учетом их функциональных особенностей различают 4 основные групп:

1.Нейроэндокринные трансдукторы – либерины (стимуляторы) и стати (тормозящие факторы)

2.Нейрогемальные образования (медиальное возвышение гипоталамуса), задняя доля гипофиза, которые не вырабатывают собственные гормонов, но накапливают гормоны, продуцируемые в нейросекреторных ядрах гипоталамуса

3.Центральный орган регуляции эндокринных желез и неэндокринных функций – аденогипофиз, осуществляющий регуляцию с помощью вырабатываемых в нем специфических тропных гормонов

4.Переферические эндокринных железы и структуры (аденогипофиззависимые и аденогипофизнезависимые). К аденогипофиззависимым относятся: щитовидная железа (фолликулярные эндокриноциты – тироциты), надпочечники (сетчатая и пучковая зона коркового вещества) и гонады. Ко вторым относятся: паращитовидные железы, кальцитонинциты (С-клетки) щитовидной железы, клубочковая зона коры и мозговое вещество надпочечников, эндокриноциты островков поджелудочной железы, одиночные гормонпродуцирующие клетки.

Взаимосвязь нервной и эндокринной систем

Общим для нервных и эндокринных клеток является выработка гуморальных регулирующих факторов. Эндокринных клетки синтезируют гормоны и выделяют их в кровь, а нейронных синтезируют нейротрансмиттеры: норадреналин, серотонин и другие, выделяющиеся в синаптические щели. В гипоталамусе находятся секреторные нейроны, совмещающие свойства нервных и эндокринных клеток. Они обладают способностью образовывать как нейроамины, так и олигопептидные гормоны. Выработка гормонов эндокринными железами регулируется нервной системой, с которой они тесно связаны.

Гормоны – высокоактивные регуляторные факторы, оказывающие стимулирующее или угнетающее влияние преимущественно на основные функции организма: метаболизм, соматический рост, репродуктивные функции. Для гормонов характерна специфичность действия на конкретные клетки и органы, называемые мишенями, что обусловлено наличием на последних специфических рецепторов. Гормон распознается и связывается с этими клеточными рецепторами. Связывание гормона с рецептором активирует фермент аденилатциклазу, который в свою очередь вызывает образование цАМФ из АТФ. Далее цАМФ активирует внутриклеточные ферменты, что приводит клетку-мишень в состояния функционального возбуждения.

Щитовидная железа – эта железа содержит два типа эндокринных клеток, имеющих разное происхождение и функции: фолликулярные эндокриноциты, тироциты, вырабатывающие гормон тироксин, и парафолликулярные эндокриноциты, вырабатывающие гормон кальцитонин.

Эмбриональное развитие – развитие щитовидной железы
ачаток щитовидной железы возникает на 3-4-й неделе беременности как выпячивание вентральной стенки глотки между I и II парами жаберных карманов у основания языка. Из этого выпячивания формируется щитовидно-язычный проток, который затем превращается в эпителиальный тяж, растущий вниз вдоль передней кишки. К 8-й неделе дистальный конец тяжа раздваивается (на уровне III-IV пар жаберных карманов); из него впоследствии формируются правая и левая доли щитовидной железы, располагающиеся спереди и по бокам трахеи, поверх щитовидного и перстневидного хрящей гортани. Проксимальный конец эпителиального тяжа в норме атрофируется, и от него остается только перешеек, связывающий обе доли железы. Щитовидная железа начинает функционировать на 8-й неделе беременности, о чем свидетельствует появление тиреоглобулина в сыворотке плода. На 10-й неделе щитовидная железа приобретает способность захватывать йод. К 12-й неделе начинается секреция тиреоидных гормонов и запасание коллоида в фолликулах. Начиная с 12-й недели концентрации ТТГ, тироксинсвязывающего глобулина, общего и свободного T4 , общего и свободного T3 в сыворотке плода постепенно увеличиваются и к 36-й неделе достигают уровней, характерных для взрослых.

Строение – щитовидная железа окружена соединительнотканной капсулой, прослойки которой направляются вглубь и разделяют орган на дольки, в которых располагаются многочисленных сосуды микроциркуляторного русла и нервы. Основными структурными компонентами паренхимы железы являются фолликулы – замкнутые или слегка вытянутые образования варьирующих размеров с полостью внутри, образованные одним слоем эпителиальных клеток, представленных фолликулярными эндокриноцитами, а так же парафолликулярными эндокриноцитами нейрального происхождения. В дольше железы различают фолликулярные комплексы (микродольки), которые состоят из группы фолликулов, окруженных тонкой соединительной капсулой. В просвете фолликулов накапливается коллоид – секреторный продукт фолликулярных эндокриноцитов, представляющий собой вязкую жидкость, состояющую в основном из тироглобулина. В небольших формирующихся фолликулах, ещё не заполненных коллоидом, эпителий однослойный призматический. По мере накопления коллоида размеры фолликулов увеличиваются, эпителий становится кубическим, а в сильно растянутых фолликулах, заполненных коллоидом, - плоским. Основная масса фолликулов в норме образована тироцитами кубической формы. Увеличение размеров фолликулов обусловлено пролиферацией, ростом и дифференцировкой тироцитов, сопровождаемой накопление коллоида в полости фолликула.

Фолликулы разделяются тонкими прослойками рыхлой волокнистой соединительной ткани с многочисленными кровеносными и лимфатическими капиллярами, оплетающими фолликулы, тучными клетками, лимфоцитами.

Фолликулярные эндокриноциты, или тироциты – железистые клетки, составляющие большую часть стенки фолликулов. В фолликулах тироциты образуют выстелку и располагаются на базальной мембране. При умеренной функциональной активности щитовидной железы (нормофункции) тироциты имеют кубическую форму и шаровидные ядра. Коллоид секретируемый ими, заполняет в виде гомогенной массы просвет фолликулы. На апикальной поверхности тироцитов, обращенной к просвету фолликула, имеются микроворсинки. По мере усиления тироидной активности количество и размеры микроворсинок возрастают. Одновременно базальная поверхность тироцитов, почти гладкая в периоде функционального покоя щитовидной железы, становится складчатой, что увеличивает соприкосновение тироцитов с перифолликулярными пространствами. Соседние клетки в выстилке фолликулов тесно связаны между собой многочисленными деспосомами и хорошо развитыми терминальными поверхностями тироцитов возникают пальцевидные выступы, входящие в соответствующие вдавления боковой поверхности соседних клеток.

В тироцитах хорошо развиты органеллы, особенно участвующие в белковом синтезе.

Белковые продукты, синтезируемые тироцитами, выделяются в полость фолликула, где завершается образование йодированных тирозинов и тиронинов (АК-от, входящих в состав крупной и сложной молекулы тироглобулина). Когда же потребности организма в тироидном гормоне возрастают и функциональная активность щитовидной железы усиливается, тироциты фолликулов принимают призматическую форму. Интрафолликулярный коллоид при этом становится более жидким и пронизывается многочисленными ресобрционными вакуолями. Ослабление функциональной активности проявляется, наоброт, уплотнение коллоида, его застоем внутри фолликулов, диаметр и объём которых сильно увеличиваются; высота тироцитов уменьшается, они принимают уплощенную форму, а их ядра вытягиваются параллельно поверхности фолликула.

Нервная и эндокринная системы модулируют функции иммунной системы с помощью нейротрансмиттеров, нейропептидов и гормонов, а иммунная система взаимодействует с нейроэндокринной с помощью цитокинов, иммунопептидов и иммунотрансмиттеров. Существует нейрогормональная регуляция иммунного ответа и функций иммунной системы, опосредованная действием гормонов и нейропептидов непосредственно на иммунокомпетентные клетки или через регуляцию продукции цитокинов (рис. 2). Вещества аксональным транспортом проникают в иннервируемые ими ткани и влияют на процессы иммуногенеза, и наоборот, со стороны иммунной системы поступают сигналы (цитокины, выделяемые иммунокомпетентными клетками), которые ускоряют или замедляют аксональный транспорт в зависимости от химической природы воздействующего фактора.

Нервная, эндокринная и иммунная системы имеют много общего в своём строении. Все три системы действуют согласованно, дополняя и дублируя друг друга, значительно повышая надёжность регуляции функций. Они тесно взаимосвязаны и имеют большое количество перекрёстных путей. Существует определённая параллель между лимфоидными скоплениями в различных органах и тканях и ганглиями вегетативной нервной системы.

Стресс и иммунная система.

Эксперименты на животных и клинические наблюдения свидетельствуют о том, что состояние стресса, некоторые психические расстройства приводят к резкому угнетению практически всех звеньев иммунной системы организма.

Большая часть лимфоидных тканей имеет прямую симпатическую иннервацию как кровеносных сосудов, проходящих через лимфоидную ткань, так и непосредственно самих лимфоцитов. Вегетативная нервная система непосредственно иннервирует паренхиматозные ткани тимуса, селезёнки, лимфатических узлов, аппендикса и костного мозга.

Воздействие фармакологическими препаратами на постганглионарные адренергические системы приводит к модуляции иммунной системы. Стресс, напротив, приводит к десенситизации в-адренорецепторов.

Норадреналин и адреналин действуют на адренорецепторы - АМФ - протеинкиназа А подавляет продукцию провоспалительных цитокинов, таких как IL-12, фактор некроза опухоли б (TNFa), интерферон г (IFNг) антиген-представляющими клетками и Т-хелперами первого типа и стимулируют образование противовоспалительных цитокинов, таких как IL-10 и трансформирующий фактор роста-в (TFRв).

Рис. 2.Два механизма вмешательства иммунных процессов в деятельность нервной и эндокринной систем: А - глюкокортикоидная обратная связь, торможение синтеза интерлейкина-1 и других лимфокинов, Б - аутоантитела к гормонам и их рецепторам. Тх - Т-хелпер, МФ - макрофаг

Вместе с тем, при определённых условиях катехоламины способны ограничить местную иммунную реакцию путём индукции образования IL-1, TNFa и IL-8, обеспечивая защиту организма от вредного действия провоспалительных цитокинов и других продуктов активированных макрофагов. При взаимодействии симпатической нервной системы с макрофагами нейропептид Y выступает в качестве сопередатчика сигнала с норадреналина на макрофаги. Блокируя a-адренорепторы, он поддерживает стимулирующий эффект эндо - генного норадреналина через в-адренорецепторы.

Опиоидные пептиды - одни из посредников между ЦНС и иммунной системой. Они способны оказывать влияние практически на все иммунологические процессы. В связи с этим было сделано предположение, что опиоидные пептиды опосредованно модулируют секрецию гормонов гипофиза и таким путём воздействуют на иммунную систему.

Нейротрансмиттеры и иммунная система.

Однако взаимоотношения между нервной и иммунной системами не ограничиваются регулирующим влиянием первой на вторую. В последние годы накопилось достаточное количество данных о синтезе и секреции нейротрансмиттеров клетками иммунной системы.

Т-лимфоциты периферической крови человека содержат L-дофа и норадреналин, а В-клетки - только L-дофа.

Лимфоциты in vitro способны синтезировать норадреналин как из L-тирозина, так и L-дофа, добавленных в культуральную среду в концентрациях, соответствующих содержанию в венозной крови (5-10 -5 и 10 -8 моль соответственно), в то время как D-дофа не влияет на внутриклеточное содержание норадреналина. Следовательно, Т-лимфоциты человека способны синтезировать катехоламины из их нормальных предшественников в физиологических концентрациях.

Соотношение норадреналин / адреналин в лимфоцитах периферической крови аналогично таковому в плазме. Существует отчётливая корреляционная связь между количеством норадреналина и адреналина в лимфоцитах, с одной стороны, и циклической АМФ в них - с другой, как в норме, так и при стимуляции изопротеренолом.

Вилочковая железа (тимус).

Вилочковой железе отводят важное место во взаимодействии иммунной системы с нервной и эндокринной. В пользу такого заключения приводят ряд аргументов:

Недостаточность тимуса не только замедляет формирование иммунной системы, но и приводит к нарушению эмбрионального развития передней доли гипофиза;

Связывание гормонов, синтезируемых в ацидофильных клетках гипофиза, с рецепторами эпителиальных клеток тимуса (thymus epithelial cells - TECs) увеличивает освобождение имиin vitro тимических пептидов;

Повышение в крови концентрации глюкокортикоидов при стрессе вызывает атрофию коры тимуса благодаря удвоению тимоцитов, подвергающихся апоптозу;

Паренхима тимуса иннервируется веточками вегетативной нервной системы; действие ацетилхолина на ацетилхолиновые рецепторы эпителиальных клеток тимуса увеличивает белково-синтетическую активность, связанную с образованием тимических гормонов.

Белки тимуса представляют собой гетерогенное семейство полипептидных гормонов, не только оказывающих регуляторное действие как на иммунную, так и на эндокринную системы, но и находящихся под контролем гипоталамо-гипофизарно-надпочечниковой системы и других желёз внутренней секреции. Так, образование вилочковой железой тимулина регулирует ряд гормонов, включая пролактин, гормон роста и тиреоидные гормоны. В свою очередь, выделенные из тимуса белки регулируют секрецию гормонов гипоталамо-гипофизарно-надпочечниковой системой и могут непосредственно воздействовать на железы-мишени этой системы и ткани гонад.

Регуляция иммунной системы.

Гипоталамо-гипофизарно-надпочечниковая система - мощный механизм регуляции иммунной системы. Кортикотропин-рилизинг - фактор, АКТГ, б-меланоцитостимулирующий гормон, в-эндорфин - иммуномодуляторы влияющие как прямо на лимфоидные клетки, так и через иммунорегулирующие гормоны (глюкокортикоиды) и нервную систему.

Иммунная система посылает сигналы нейроэндокринной системе через цитокины, концентрация которых в крови достигает значимых величин при иммунных (воспалительных) реакциях. IL-1, IL-6 и TNFa - основные цитокины, вызывающие глубокие нейроэндокринные и метаболические изменения во многих органах и тканях.

Кортикотропин-рилизинг-фактор выступает в качестве основного координатора реакций и ответственен за активацию АКТГ-адреналовой оси, повышение температуры и реакции ЦНС, определяющих симпатические эффекты. Увеличение секреции АКТГ ведёт к повышению продукции глюкокортикоидов и a-меланоцитостимулирующего гормона - антагонистов цитокинов и антипиретических гормонов. Реакция симпатоадреналовой системы связана с накоплением катехоламинов в тканях.

Иммунная и эндокринная системы перекрёстно взаимодействуют, используя сходные или тождественные лиганды и рецепторы. Так, цитокины и гормоны тимуса модулируют функцию системы гипоталамус-гипофиз.

* Интерлейкин (IL-l) непосредственно регулирует продукцию кортикотропин-рилизинг-фактора. Тимулин через адреногломерулотропин и активность гипоталамических нейронов и клеток гипофиза повышает продукцию лютеинизирующего гормона.

* Пролактин, воздействуя на рецепторы лимфоцитов, активирует синтез и секрецию клетками цитокинов. Он действует на нормальные киллеры и индуцирует их дифференцировку в пролактинактивированные клетки-киллеры.

* Пролактин и гормон роста стимулируют лейкопоэз, (в том числе лимфопоэз).

Клетки гипоталамуса и гипофиза могут продуцировать цитокины, такие как IL-1, IL-2, IL-6, г-интерферон, в-трансформирующий ростковый фактор и другие. Соответственно, гормоны, включая гормон роста, пролактин, лютеинизирующий гормон, окситоцин, вазопрес - син и соматостатин образуются в вилочковой железе. Рецепторы к различным цитокинам и гормонам выявлены как в тимусе, так и в оси гипоталамус-гипофиз.

Возможная общность регуляторных механизмов ЦНС, нейроэндокринной и иммунологической систем выдвигают новый аспект гомеостатического контроля многих патологических состояний (рис. 3, 4). В поддержании гомеостаза при действии на организм различных экстремальных факторов все три системы действуют как единое целое, дополняя друг друга. Но, в зависимости от природы воздействия, в регуляции адаптивных и компенсаторных реакций ведущей становится одна из них.


Рис. 3. Взаимодействие нервной, эндокринной и иммунной систем в регуляции физиологических функций организма

Многие функции иммунной системы обеспечены дублирующими механизмами, с чем связаны дополнительные резервные возможности защиты организма. Защитная функция фагоцитоза дублируется гранулоцитами и моноцитами / макрофагами. Способностью усиливать фагоцитоз обладают антитела, система комплемента и цитокин г-интерферон.

Цитотоксическое действие против клеток-мишеней, инфицированных вирусом или злокачественно трансформированных, дублируют естественные киллеры и цитотоксические Т-лимфоциты (рис. 5). В противовирусном и противоопухолевом иммунитете защитными клетками-эффекторами могут служить либо естественные киллеры, либо цитотоксические Т-лимфоциты.


Рис. 4.Взаимодействие системы иммунитета и регуляторных механизмов с факторами окружающей среды в условиях экстремальных воздействий


Рис. 5.Дублирование функций в иммунной системе обеспечивает её резервные возможности

При развитии воспаления несколько цитокинов-синергистов дублируют функции друг друга, что позволило объединить их в группу провоспалительных цитокинов (интерлейкины 1, 6, 8, 12 и TNFa). В завершающей стадии воспаления участвуют другие цитокины, дублирующие эффекты друг друга. Они служат антагонистами провоспалительных цитокинов и называются противовоспалительными (интерлейкины 4, 10, 13 и трансформирующий ростовой фактор-в). Цитокины, продуцируемые Th2 (интерлейкины 4, 10, 13, трансформирующий ростовой фактор-в), антагонистичны по отношению к цитокинам, продуцируемым ТЫ (г-интерферона, TNFa).

Онтогенетические изменения иммунной системы.

В процессах онтогенеза иммунная система претерпевает постепенное развитие и созревание: сравнительно медленное в эмбриональный период, оно резко ускоряется после рождения ребенка в связи с поступлением в организм большого количества чужеродных антигенов. Тем не менее, большинство защитных механизмов несёт черты незрелости на протяжении всего периода детства. Нейрогормональная регуляция функций иммунной системы начинает отчётливо проявляться в пубертатный период. В зрелом возрасте иммунная система характеризуется наибольшей способностью к адаптации при попадании человека в изменённые и неблагоприятные условия внешней среды. Старение организма сопровождается различными проявлениями приобретённой недостаточности иммунной системы.

Регуляцию деятельности всех систем и органов нашего организма осуществляет нервная система , представляющая собой совокупность нервных клеток (нейронов), снабженных отростками.

Нервная система человека состоит из центральной части (головного и спинного мозга) и периферической (отходящих от головного и спинного мозга нервов). Нейроны взаимодействуют между собой посредством синапсов.

В сложных многоклеточных организмах все основные формы деятельности нервной системы связаны с участием определенных групп нервных клеток - нервных центров. Эти центры отвечают соответствующими реакциями на внешнее раздражение, поступившее от связанных с ними рецепторов. Для деятельности центральной нервной системы характерна упорядоченность и согласованность рефлекторных реакций, то есть их координация.

В основе всех сложных регуляторных функций организма лежит взаимодействие двух основных нервных процессов - возбуждения и торможения.

Согласно учению И. II. Павлова, нервная система оказывает следующие типы воздействий на органы:

–– пусковое , вызывающее либо прекращающее функцию органа (сокращение мышцы, секрецию железы и т. д.);

–– сосудодвигательное , вызывающее расширение или сужение сосудов и тем самым регулирующее приток к органу крови (нейрогуморальная регуляция),

–– трофическое , оказывающее влияние на обмен веществ (нейроэндокринная регуляция).

Регуляция деятельности внутренних органов осуществляется нервной системой через специальный ее отдел - вегетативную нервную систему .

Совместно с центральной нервной системой гормоны принимают участие в обеспечении эмоциональных реакций и психической деятельности человека.

Эндокринная секреция способствует нормальному функционированию иммунной и нервной систем, которые, в свою очередь, оказывают влияние на работу эндокринной системы (нейро-эндокринно-иммунная регуляция).

Тесная взаимосвязь работы нервной и эндокринной систем объясняется наличием в организме нейросекреторных клеток. Нейросекреция (от лат. secretio - отделение) - свойство некоторых нервных клеток вырабатывать и выделять особые активные продукты - нейрогормоны .

Распространяясь (подобно гормонам эндокринных желез) по организму с током крови, нейрогормоны способны оказывать влияние на деятельность различных органов и систем. Они регулируют функции эндокринных желез, которые, в свою очередь, выбрасывают гормоны в кровь и осуществляют регуляцию активности других органов.

Нейросекреторные клетки , как и обычные нервные клетки, воспринимают сигналы, поступающие к ним от других отделов нервной системы, но далее передают полученную информацию уже гуморальным путем (не по аксонам, а по сосудам) - посредством нейрогормонов.

Таким образом, совмещая свойства нервных и эндокринных клеток, нейросекреторные клетки объединяют нервные и эндокринные регуляторные механизмы в единую нейроэндокринную систему. Этим обеспечивается, в частности, способность организма адаптироваться к изменяющимся условиям внешней среды. Объединение нервных и эндокринных механизмов регуляции осуществляется на уровне гипоталамуса и гипофиза.

Жировой обмен

Быстрее всего в организме перевариваются жиры, медленнее всего - белки. Регуляция углеводного обмена в основном осуществляется гормонами и центральной нервной системой. Поскольку в организме все взаимосвязано, любые нарушения в работе одной системы вызывают соответствующие изменения в других системах и органах.

О состоянии жирового обмена косвенно может свидетельствовать уровень сахара в крови , указывающий на активность углеводного обмена. В норме этот показатель составляет 70-120 мг%.

Регуляция жирового обмена

Регуляция жирового обмена осуществляется центральной нервной системой, в частности гипоталамусом. Синтез жиров в тканях организма происходит не только из продуктов жирового обмена, но также из продуктов углеводного и белкового обмена. В отличие от углеводов, жиры могут храниться в организме в концентрированном виде долгое время, поэтому избыточное количество сахара, поступившее в организм и не израсходованное им сразу же на получение энергии, превращается в жир и откладывается в жировых депо: у человека развивается ожирение. Более подробно о данном заболевании будет рассказано в следующем разделе этой книги.

Основная часть пищевых жиров подвергается перевариванию в верхних отделах кишечника при участии фермента липазы, который выделяется поджелудочной железой и слизистой оболочкой желудка.

Норма липазы сыворотки крови - 0,2-1,5 ед. (менее 150 Е/л). Содержание липазы в циркулирующей крови повышается при панкреатите и некоторых других заболеваниях. При ожирении отмечается снижение активности тканевых и плазменных липаз.

Ведущую роль в обмене веществ выполняет печень , являющаяся одновременно и эндокринным, и экзокринным органом. Именно в ней происходит окисление жирных кислот и вырабатывается холестерин, из которого синтезируются желчные кислоты . Соответственно, в первую очередь уровень холестерина зависит от работы печени.

Желчные, или холевые кислоты представляют собой конечные продукты обмена холестерина. По своему химическому составу это стероиды. Они играют важную роль в процессах переваривания и всасывания жиров, способствуют росту и функционированию нормальной кишечной микрофлоры.

Желчные кислоты входят в состав желчи и выделяются печенью в просвет тонкой кишки. Вместе с желчными кислотами в тонкий кишечник выделяется небольшое количество свободного холестерина, который частично выводится с калом, а оставшаяся его часть растворяется и вместе с желчными кислотами и фосфолипидами всасывается в тонкой кишке.

Продуктами внутренней секреции печени являются метаболиты - глюкоза, необходимая, в частности, для мозгового обмена и нормального функционирования нервной системы, и триацил-глицериды.

Процессы обмена жиров в печени и жировой клетчатке неразрывно связаны между собой. Свободный холестерин, находящийся в организме, тормозит по принципу обратной связи собственный биосинтез. Скорость превращения холестерина в желчные кислоты пропорциональна его концентрации в крови, а также зависит от активности соответствующих ферментов. Транспортировка и запасание холестерина контролируется различными механизмами. Транспортной формой холестерина являются, как уже было отмечено ранее, липоиротеиды .


Особенности систем

Автономная нервная система пронизывает все наше тело подобно тончайшей паутине. У нее есть две ветви: возбуждения и торможения. Симпатическая нервная система – это возбуждающая часть, она приводит нас в состояние готовности столкнуться с вызовом или опасностью. Нервные окончания выделяют медиаторы, стимулирующие надпочечники к выделению сильных гормонов – адреналина и норадреналина. Они в свою очередь повышают частоту сердечных сокращений и частоту дыхания, и действуют на процесс пищеварения посредством выделения кислоты в желудке. При этом возникает сосущее ощущение под ложечкой. Парасимпатические нервные окончания выделяют другие медиаторы, снижающие пульс и частоту дыхания. Парасимпатические реакции – это расслабление и восстановление баланса.

Эндокринная система организма человека объединяет небольшие по величине и различные по своему строению и функциям железы внутренней секреции, входящие в состав эндокринной системы. Это гипофиз с его независимо функционирующими передней и задней долями, половые железы, щитовидная и паращитовидные железы, кора и мозговой слой надпочечников, островковые клетки поджелудочной железы и секреторные клетки, выстилающие кишечный тракт. Все вместе взятые они весят не более 100 граммов, а количество вырабатываемых ими гормонов может исчисляться миллиардными долями грамма. Гипофиз, вырабатывающий более 9 гормонов, регулирует активность большинства других эндокринных желез и сам находится под контролем гипоталамуса. Щитовидная железа регулирует рост, развитие, интенсивность обмена веществ в организме. Вместе с паращитовидной железой она также регулирует уровень кальция в крови. Надпочечники тоже влияют на интенсивность обмена веществ и помогают организму противостоять стрессам. Поджелудочная железа регулирует уровень сахара в крови и одновременно действует как железа внешней секреции -выделяет через протоки в кишечник пищеварительные ферменты. Эндокринные половые железы - семенники у мужчин и яичники у женщин - сочетают выработку половых гормонов с неэндокринными функциями: в них еще и созревают половые клетки. Сфера влияния гормонов исключительно велика. Они оказывают прямое воздействие на рост и развитие организма, на все виды обмена веществ, на половое созревание. Между железами внутренней секреции нет прямых анатомических связей, но существует взаимозависимость функций одной железы от других. Эндокринную систему здорового человека можно сравнить с хорошо сыгранным оркестром, в котором каждая железа уверенно и тонко ведет свою партию. А в роли дирижера выступает главная верховная железа внутренней секреции – гипофиз. Передняя доля гипофиза выделяет в кровь шесть тропных гормонов: соматотропный, адренокортикотропный, тиреотропный, пролактин, фолликулостимулирующий и лютеинизирующий – они направляют и регулируют деятельность других желез внутренней секреции.

Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, тональность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам. Изучение физиологического действия эндокринных желез позволило раскрыть секреты половой функции и более подробно изучить механизм рождения детей, а также ответить на
вопрос, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые.

В нормальном состоянии существует гармоничный баланс между активностью эндокринных желез, состоянием нервной системы и ответом тканей-мишеней (тканей, на которые направлено воздействие). Любое нарушение в каждом из этих звеньев быстро приводит к отклонениям от нормы. Избыточная или недостаточная продукция гормонов служит причиной различных заболеваний, сопровождающихся глубокими химическими изменениями в организме.

Изучением роли гормонов в жизнедеятельности организма и нормальной и патологической физиологией желез внутренней секреции занимается эндокринология.

Связь эндокринной и нервной систем

Нейроэндокринная регуляция есть результат взаимодействия нервной и эндокринной систем. Она осуществляется благодаря влиянию высшего вегетативного центра мозга - гипоталамуса - на расположенную в мозге железу - гипофиз, образно именуемую «дирижером эндокринного оркестра». Нейроны гипоталамуса выделяют нейрогормоны (рилизинг-факторы), которые, поступая в гипофиз, усиливают (либерины) или тормозят (статины) биосинтез и выделение тройных гормонов гипофиза. Тройные гормоны гипофиза, в свою очередь, регулируют активность периферических желез внутренней секреции (щитовидной, надпочечников, половых), которые в меру своей активности изменяют состояние внутренней среды организма и оказывают влияние на поведение.

Гипотеза нейроэндокринной регуляции процесса реализации генетической информации предполагает существование на молекулярном уровне общих механизмов, обеспечивающих как регуляцию активности нервной системы, так и регуляторные воздействия на хромосомный аппарат. При этом одной из существенных функций нервной системы является регуляция активности генетического аппарата по принципу обратной связи в соответствии с текущими нуждами организма, влиянием среды и индивидуальным опытом. Другими словами, функциональная активность нервной системы может играть роль фактора, изменяющего активность генных систем.

Гипофиз может получать сигналы, оповещающие о том, что происходит в теле, но он не имеет прямой связи с внешней средой. Между тем, для того, чтобы факторы внешней среды постоянно не нарушали жизнедеятельность организма, должно осуществятся приспособление тела к меняющимся внешним условиям. О внешних воздействиях организм узнает через органы чувств, которые передают полученную информацию в центральную нервную систему. Являясь верховной железой эндокринной системы, гипофиз сам подчиняется центральной нервной системе и в частности гипоталамусу. Этот высший вегетативный центр постоянно координирует, регулирует деятельность различных отделов мозга, всех внутренних органов. Частота сердечных сокращений, тонус кровеносных сосудов, температура тела, количество воды в крови и тканях, накопление или расход белков, жиров, углеводов, минеральных солей – словом существование нашего организма, постоянство его внутренней среды находится под контролем гипоталамуса. Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипоталамуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную активность гипоталамуса как активирующее, так и тормозное влияние. Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей подчиненных ему.

Гипоталамус руководит гипофизом, используя и нервные связи, и систему кровеносных сосудов. Кровь, которая поступает в переднюю долю гипофиза, обязательно проходит через серединное возвышение гипоталамуса и обогащается там гипоталамическими нейрогормонами. Нейрогормоны - это вещества пептидной природы, которые представляют собой части белковых молекул. К настоящему времени обнаружено семь нейрогормонов, так называемых либеринов (то есть освободителей), которые стимулируют в гипофизе синтез тропных гормонов. А три нейрогормона - пролактостатин, меланостатин и соматостатин, - напротив, тормозят их выработку. К нейрогормонам относят также вазопрессин и окситоцин. Окситоцин стимулирует сокращение гладкой мускулатуры матки при родах, выработку молока молочными железами. Вазопрессин активно участвует в регуляции транспорта воды и солей через клеточные мембраны, под его влиянием уменьшается просвет кровеносных сосудов и, следовательно, повышается давление крови. За то, что этот гормон обладает способностью задерживать воду в организме, его часто называют антидиуретическим гормоном (АДГ). Главной точкой приложения АДГ являются почечные канальцы, где он стимулирует обратное всасывание воды из первичной мочи в кровь. Продуцируют нейрогормоны нервные клетки ядер гипоталамуса, а затем по собственным аксонам (нервным отросткам) транспортируют в заднюю долю гипофиза, и уже отсюда эти гормоны поступают в кровь, оказывая сложное воздействие на системы организма.

Тропины образующиеся в гипофизе не только регулируют деятельность подчиненных желез, но и выполняют самостоятельные эндокринные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам, стимулирует родительский инстинкт. Кортикотропин является не только стимулятором стердогенеза но и активатором липолиза в жировой ткани, а также важнейшим участником процесса превращения в мозге кратковременной памяти в долговременную. Гормон роста может стимулировать активность иммунной системы, обмен липидов, сахаров и т.д. Также некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например, соматостатин (гормон гипоталамуса, ингибирующий образование и секрецию гормона роста) обнаружен также в поджелудочной железе, где он подавляет секрецию инсулина и глюкагона. Некоторые вещества действуют в обеих системах; они могут быть и гормонами (т.е. продуктами эндокринных желез), и медиаторами (продуктами определенных нейронов). Такую двоякую роль выполняют норадреналин, соматостатин, вазопрессин и окситоцин, а также передатчики диффузной нервной системы кишечника, например холецистокинин и вазоактивный кишечный полипептид.

Однако не следует думать, что гипоталамус и гипофиз лишь отдают приказы, спуская по цепочке «руководящие» гормоны. Они и сами чутко анализируют сигналы, поступающие с периферии, от желез внутренней секреции. Деятельность эндокринной системы осуществляется на основе универсального принципа обратной связи. Избыток гормонов той или иной железы внутренней секреции тормозит выделение специфического гормона гипофиза, ответственного за работу данной железы, а недостаток побуждает гипофиз усилить выработку соответствующего тройного гормона. Механизм взаимодействия между нейрогормонами гипоталамуса, тройными гормонами гипофиза и гормонами периферических желез внутренней секреции в здоровом организме отработан длительным эволюционным развитием и весьма надежен. Однако достаточно сбоя в одном звене этой сложной цепи, чтобы произошло нарушение количественных, а порой и качественных соотношений в целой системе, влекущее за собой различные эндокринные заболевания.



Top