Превращения углеводов при производстве пищевых продуктов. Гидролиз крахмала

Большинство промышленно важных ферментов относятся к классу гидролаз, потребность в которых исчисляется десятками тысяч тонн. В технологии бродильных производств гидролазам принадлежит огромная роль, так как именно они отвечают за подготовку сырья к сбраживанию.

К гидролазам относятся амилолитические, протеолитические, цитолитические, липолитические, пектолитические и другие ферменты.

Гидролиз крахмала осуществляется амилолитическими ферментами.

Крахмал - полисахарид, состоящий в свою очередь из двух полисахаридов, которые отличаются степенью полимеризации и типом строения – амилозой(примерное содержание 20-30 %)и амилопектином (70- 80 %). Структурной единицей крахмала, а, следовательно, амилозы и амилопектина, является глюкоза, остатки которой соединены между собой α-1,4 и α-1,6- глюкозидньми связями.

Амилоза имеет линейное строение, связь между остатками глюкозы α-1,4 (между 1-м и 4-м углеродными атомами). Растворима в горячей воде без набухания. Образует растворы невысокой вязкости. Молекулярная масса от 60 до 600. С йодом дает синее окрашивание.

о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-

Рисунок 16 – Строение амилозы

Амилопектин представляет собой разветвленную цепь, состоящую из большого числа глюкозных остатков (около 2500). Главная цепочка состоит из 25-30 остатков, а боковые __ из 15-18. В амилопектине остатки глюкозы на линейных участках связаны α-1,4- связью, а в местах ветвления связь α-1,6. В воде не растворяется. При нагревании образует клейстер. С йодом дает фиолетовое окрашивание.

Гидролиз крахмала и продуктов его частичного гидролиза, а также гликогена, осуществляется амилазами (α-амилазой, β-амилазой, глюкоамилазой и другими амилолитическими ферментами).

α- амилаза (декстриногенамилаза) - по механизму действия относится к эндоферментам, т.е. действует на молекулу субстрата изнутри, беспорядочно, что приводит к быстрому снижению вязкости раствора крахмала. Гидролизует связи α-1,4 в полисахаридах, содержащих три и более остатков Д-глюкозы.

Амилоза под действием α-амилазы сначала распадается на декстрины среднего размера, которые затем расщепляются на низкомолекулярные декстрины и мальтозу. При длительном действии фермента амилоза практически полностью превращается в мальтозу и небольшое количество глюкозы.

Действие α-амилазы на амилопектин приводит к образованию мальтозы и низкомолекулярных декстринов.

Общая схема гидролиза крахмала α-амилазой:

α-амилаза

Крахмал низкомолекулярные декстрины

(много)+ мальтоза (мало) + глюкоза (очень мало)


Оптимальные условия действия фермента: рН 5,7, температура 70 °С.

β-амилаза (сахарогенамилаза) __ экзофермент, катализирует гидролиз связей α -1,4 в полисахаридах, последовательно отщепляя остатки мальтозы от нередуцирующего (где отсутствует свободная альдегидная группа) конца цепей. β-амилаза расщепляет амилозу полностью (если количество молекул глюкозы в ней четное) в мальтозу, если нечетное, то наряду с мальтозой образуется мальтотриоза.

В амилопектине β-амилаза действует лишь на свободные нередуцирующие концы глюкозных цепочек с образованием мальтозы и высокомолекулярных декстринов. Действие ее прекращается при приближении к разветвлению (где имеется связь α-1,6) на расстоянии одной молекулы глюкозы. Образовавшиеся декстрины гидролизуются дальше α-амилазой до декстринов меньшей молекулярной массы.

Общая схема гидролиза крахмала под действием β-амилазы:

β-амилаза

Крахмал высокомолекулярные декстрины (много) + мальтоза (много) + мальтотриоза (мало)

Оптимальные условия действия β-амилазы: рН 4,7, температура 63 °С.

Таким образом, при совместном действии α- и β-амилаз на крахмал только 80 % его превращается в сбраживаемые сахара (мальтозу, глюкозу, мальтотриозу) и 20 % __ в декстрины с 5-8 глюкозными остатками.

Предельная декстриназа __ эндофермент, неупорядоченно гидролизует в крахмале, гликогене, декстринах α-1,6-глюкозидную связь. Чаще всего образуется мальтотриоза. Оптимальные параметры действия: рН 6,5, температура 50 о С.

Глюкоамилаза __ экзофермент, гидролизует связи α-1,4 и α-1,6 в полисахаридах, последовательно отщепляя по одному остатку глюкозы с нередуцирующих концов цепей. Связи α-1,4 в крахмале разрушаются быстрее, чем α-1,6. Оптимальные условия: рН 4,5-4,6, температура 55-60°С.

В различных бродильных производствах к гидролизу крахмала предъявляют разные требования. В производстве спирта необходимо прогидролизовать крахмал как можно глубже, чтобы получить больше сбраживаемых сахаров, а, следовательно, более высокий выход спирта.

В производстве пива полный гидролиз крахмала не осуществляют, так как в среде кроме сбраживаемых сахаров (нужных для образования определенного количества спирта) должны находиться низкомолекулярные декстрины, придающие полноту вкуса и вязкость пиву.

В зависимости от источника фермента свойства амилаз и других ферментов могут сильно отличаться не только по механизму действия и конечным продуктам реакции, но и оптимальным условиям для проявления максимальной активности. Выше были приведены оптимальные параметры действия для α- и β-амилаз солода.

Бактериальные амилазы отличаются от солодовых большей термостабильностью. Оптимальные параметры действия: температура 80-85 о С (иногда до 90-95 о С), рН 5,5-5,8.

Грибные амилазы (к ним, в частности, относится глюкоамилаза) более устойчивы к реакции среды: оптимумы температуры 50-60 о С, рН 4,2-4,7.

Таким образом, бактериальные амилазы более термостабильны, а грибные амилазы действуют в более кислой среде в сравнении с солодовыми ферментами.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Этиловый спирт находит широкое применение в народном хозяйстве в качестве растворителя, также применяется в производстве дивинила, в пищевой и медицинской промышленности, в качестве горючего для ракетных двигателей, антифриза и т.д., является важным промежуточным продуктом органического синтеза (в производстве сложных эфиров, целлулоида, искусственного шелка, ацетальдегида, уксусной кислоты, хлороформа, хлораля, диэтилового эфира и других продуктов).

Таким образом, этиловый спирт относится к числу многотоннажных продуктов основного органического синтеза, мировое производство этилового спирта составляет свыше 2,5 млн. т/г (по объему производства занимает первое место в мире среди всех органических продуктов).

Суть биохимической технологии приготовления спирта состоит в следующем: вначале крахмалосодержащее сырье измельчают и разваривают до полного разрушения структуры клеток и растворения крахмала, содержащегося в них. Затем растворенный крахмал «осахаривают», то есть подвергают гидролизу под действием ферментов солода или микробных ферментных препаратов. Потом полученное «осахаренное» сусло сбраживают спиртовыми расами дрожжей. При этом происходит расщепление глюкозы под действием ферментов дрожжей. Основными продуктами брожения являются этиловый спирт и углекислый газ. Зрелая бражка содержит также побочные вторичные продукты брожения» альдегиды, кетоны, спирты сивушного масла, глицерин, карбоновые кислоты и др.

Для выведения и очистки спирта из бражки специалисты завода пользуются методами брагоректификации, обладая при этом уникальной брагоректификационной установкой, оснащенной автоматизированной системой управления, что позволяет исключить влияние человеческого фактора и, тем самым, значительно повысить качество спирта.

Брагоректификационные процессы проходят в несколько стадий, во время которых спирт концентрируется и освобождается от определенной части примесей. В результате получается ректификованный (очищенный) спирт соответствующий ГОСТу Р 51652 - 2000. Сегодня технология ректификации, разработанная специально для завода ведущими учеными России, позволяет получать спирты, которые содержат примесей на порядок меньше, чем предусмотрено ГОСТом.

1. Производство спирта

До недавнего времени производство этилового спирта основывалось на пищевом сырье - сбраживание крахмала из некоторых зерновых культур и картофеля с помощью ферментов, вырабатываемых дрожжевыми грибками. Этот способ сохранился и до сих пор, но он связан с большими затратами пищевого сырья и не может удовлетворить промышленность. Другой метод, также основанный на переработке растительного сырья, заключается в переработке древесины (гидролизный спирт). Древесина содержит до 50% целлюлозы, и при ее гидролизе водой в присутствии серной кислоты образуется глюкоза, которую подвергают затем спиртовому брожению:

(C 6 H 10 O 5) x + xH 2 O xC 6 H 12 O 6 ,

C 6 H 12 O 6 2C 2 H 5 OH + 2CO 2 .

Синтетический этиловый спирт получают гидратацией этилена.

Гидратация этилена осуществляется двумя методами: при помощи серной кислоты (сернокислая гидратация) и непосредственным взаимодействием этилена с водяным паром в присутствии катализатора.

Технология спирта включает в себя следующие процессы: подготовка сырья к развариванию, разваривание зерна водой для разрушения клеточной структуры и растворения крахмала, охлаждение разваренной массы и осахаривание крахмала ферментами солода или культур плесневых грибов, сбраживания сахаров дрожжами в спирт, отгонку спирта из бражки и его ректификацию.

Для приготовления солода используют высококачественные ячмень, рожь, овес и просо, которые должны удовлетворять требованиям, приведенным в таблице №1. Цвет ячменя светло-желтый, допускается потемневший; овса белый или желтый; проса желтый, красный, серый, белый; ржи желтый и зеленый разных оттенков; запах, свойственный зерну; не допускается затхлый, плесенный и другие посторонние запахи.

Таблица 1. Характеристика качества зерна

Качество зерна, идущего на разваривание, не регламентируется. Желательно, чтобы зерно было здоровое, высокой крахмалистости, влажностью 14-17% в зависимости от культуры и с небольшой засоренностью. Предварительно здоровое зерно оценивают органолептически.

Подготовка зерна.

Все виды зерна, поступающего в производство, очищают от пыли, земли, камней, металлических и других примесей. Зерно, предназначенное для приготовления солода, освобождают также от щуплых зерен, половинок и семян сорных растений.

Воздушно-ситовое сепарирование. Примеси, отличающиеся от зерна данной культуры толщиной (шириной) и аэродинамическими свойствами (парусностью), отделяют на воздушно-ситовом сепараторе. При очистке ячменя, овса и проса производительность сепаратора снижается на 20…30%. В очищенном зерне содержание примесей не должно превышать 1%.

Магнитное сепарирование. Мелкие металлические примеси, содержащиеся в зерне после очистки в воздушно-ситовых сепараторах, удаляют с помощью магнитных сепараторов.

Отделение семян сорных растений. С помощью сит зерно можно разделить только по толщине и ширине. Примеси, отличающиеся от основной культуры длиной зерна, выделяют на машинах, называемых триерами. Рабочий орган триера - цилиндр или диск с ячейками, выбирающими из зерновой массы короткие частицы. В зависимости от назначения различают два вида триеров: куколеотборники - выделяющие из основной культуры половинки зерен и шаровидные примеси, например семена куколя; овсюгоотборники - выделяющие зерно основной культуры, например ячменя, ржи, из смеси его с длинными зернами овса и овсюга.

Разваривание сырья.

Разваривание осуществляют для разрушения клеточных стенок, освобождения крахмала из клеток и перевода его в растворимую форму, в которой он быстрее и легче осахаривается ферментами. Разваривание крахмалсодержащего сырья проводят путем обработки его паром с избыточным давлением 400 - 500 кПа.

При разваривании происходит ряд сложных физических, физико-химических и химических изменений. При тепловой обработке в процессе разваривания идет интенсивное набухание крахмала, его кластеризация и переход в растворимую форму, обусловленные интенсивным поглощением воды. При выходе разваренной массы из варочного аппарата давление снижается до атмосферного, что вызывает превращение содержащейся в клетках воды в пар, объем которого в несколько раз превышает объем воды. Такое резкое увеличение объема приводит к разрыву клеточных стенок сырья и превращению его в однородную массу. Процесс разваривания сопровождается увеличением содержания сахаров и декстринов за счет частичного гидролиза крахмала под действием собственных ферментов сырья и естественной кислотности. Высокая температура па стадии разваривания вызывает протекание процессов меланоидинобразования (взаимодействие сахаров с аминокислотами), термического разложения сахаров (карамелизапня) и других, что приводит к снижению количества сбраживаемых сахаров.

В настоящее время разваривание крахмалсодержащего сырья производят тремя способами: периодическим, полунепрерывным и непрерывным. Наибольшее распространение получило непрерывное разваривание по двум схемам. По первой схеме разваривание осуществляют при пониженной температуре (130 - 140°С), но длительное (50 - 60 мни). По второй схеме температура разваривания 165 - 172°С и продолжительность варки 2 - 4 мин. При непрерывном разваривании сырье постоянным потоком движется через варочный аппарат для обеспечения равномерности потока сырье измельчают.

Непрерывное разваривание измельченного сырья включает операции: дозирование сырья и воды, приготовление замеса и разваривание в две стадии (нагрев замеса до температуры варки и выдержка замеса при этой температуре). Процесс непрерывного разваривания осуществляется следующим образом. Измельченное зерно смешивают с водой в количестве 2,0-3,5 л на 1 кг зерна. Воду добавляют с таким расчетом, чтобы концентрация зернового замеса составляла 16-17% сухого вещества. Зерновой замес нагревают вторичным паром до 70-75°С и подают насосом в контактную головку, где происходит мгновенный нагрев замеса (кашки) паром до 100-110°С. Затем подогретый замес подают в варочный аппарат, состоящий из 2 - 4 ступеней (колонн).

2. Охлаждение разв аренной массы и её осахаривание

При осахаривании охлажденную разваренную массу обрабатывают солодовым молоком или ферментными препаратами для расщепления крахмала и белков. При этом основным процессом является гидролиз крахмала до сбраживаемых дрожжами Сахаров.

При осахаривании разваренной массы солодовым молоком: крахмал гидролизуется на 70-75% до мальтозы и глюкозы и на 25-30% до предельных декстринов, которые расщепляются: до Сахаров на стадии брожения. При использовании солодового молока получается сусло, содержащее 71-78% мальтозы и 22-29% глюкозы от суммы всех сбраживаемых Сахаров. Сусло, полученное при осахаривании ферментными препаратами микробного происхождения, содержит 14-21% мальтозы и 79 - 81% глюкозы.

Такое различие в продуктах гидролиза крахмала при использовании разных осахаривающих материалов связано с тем, что в солодовом молоке содержатся A - и (B-амилаза и декстриназа, а ферментные препараты микробного происхождения содержат A-амилазу и глюкоамилазу. Все эти ферменты отличаются по характеру действия на крахмал и по отношению к температуре и кислотности среды. В зависимости от происхождения A-амилазы могут расщеплять крахмал только до декстринов (A-амилазы бактериального происхождения) или образуют и декстрины, и сахара (большинство A-амилаз грибного происхождения и ферменты солода). Поэтому осахаривание разваренной массы осуществляют при определенных температуре, кислотности, концентрации субстрата и осахаривающего материала.

Наиболее прогрессивным способом осахаривания является непрерывное осахаривание с вакуум-охлаждением. Сущность его заключается в снижении давления, что приводит к мгновенному охлаждению разваренной массы вследствие затрат тепла на испарение воды. Охлаждение под вакуумом предотвращает тепловую инактивацию ферментов осахаривающих материалов. К охлажденной массе добавляют осахариваюшие материалы. Оптимальная температура действия амилолитических ферментов 57-58°С. Непрерывное осахаривание разваренной массы производят по одно или двухпоточному способу. При однопоточном способе в осахариватель (цилиндрический аппарат с коническим днищем и мешалкой) подают разваренную массу, все расчетное количество осахаривающих материалов и выдерживают в течение 10 - 15 мин. При двухпоточном способе разваренную массу разделяют на два равных потока и направляют в два осахаривателя. В первый осахариватель подают 2/3 осахаривающих материалов, во второй частично осахаренное сусло охлаждают и подают на брожение в первый и второй головные аппараты бродильной батареи.

Готовое сусло должно содержать 16 - 18% сухого сахара, в том числе 13 - 15% сбраживаемых сахаров; кислотность 0,2 - 0,3 град. При пробе на йод окраска сусла не должна изменяться.

3 . Сбраживание

Сбраживание осахаренной массы (сусла) начинается с момента введения в нее производственных дрожжей; Под действием ферментов дрожжей идет расщепление мальтозы до глюкозы, которая затем сбраживается в спирт и диоксид углерода - основных продуктов брожения. Наряду с этим образуются вторичные и побочные продукты брожения: высшие спирты, кислоты и эфиры. По мере сбраживания моно - и дисахаридов под действием амилолитических ферментов происходит доосахаривание декстринов и крахмала, содержащихся в сусле. От скорости этого процесса зависит длительность брожения.

В процессе брожения сусла можно выделить три периода: взбраживание, главное брожение и дображивание. В первом периоде происходит интенсивное размножение дрожжей и сбраживание Сахаров. Второй период характеризуется энергичным сбраживанием Сахаров и сопровождается бурным выделением диоксида углерода. В третьем периоде идет медленное дображивание Сахаров, образующихся в результате доосахаривания декстринов сусла.

Процесс брожения проводят в закрытых бродильных аппаратах для предотвращения потерь спирта и выделения диоксида углерода в производственное помещение. Герметически закрытый бродильный аппарат представляет собой вертикальный цилиндр со сферическим или коническим днищем, внутри него установлен змеевик для охлаждения бродящего сусла.

Брожение сусла проводят периодическим, циклическим и непрерывнопоточным способами. Наиболее совершенным и эффективным является непрерывнопоточный метод, осуществляемый па установке, состоящей из двух дрожжанок, взбраживателя и 8-10 бродильных аппаратов, последовательно соединенных переточными трубами. Дрожжанки и взбраживатель предназначены для приготовления необходимого количества производственных дрожжей. Процесс происходит следующим образом. Дрожжанку заполняют суслом, пастеризуют его при 80°С в течение 30 мин, охлаждают до 30°С, доводят рН до 3,6-3,8 серной кислотой и вводят из второй дрожжанки засевные дрожжи в количестве 25-30% от объема. Размножение дрожжей идет до достижения содержания сухого вещества в сусле 5 - 6% - Затем 70 - 75% дрожжей переводится во взбраживатель, куда одновременно подается охлажденное сусло, производится подкисление всей массы до требуемой кислотности. Массу в таком виде оставляют для брожения и размножения дрожжей. Оставшаяся часть дрожжей (25%) подается во вторую дрожжанку для размножения.

Когда содержание сухого вещества достигнет 5 - 6%, массу подают в первый головной бродильный аппарат, в который одновременно подается охлажденное сусло. При заполнении первого головного бродильного аппарата сбраживаемое сусло на него перетекает, во второй головной аппарат, из него - в третий и т.д. Длительность брожения составляет 60 ч. Из последней, аппарата зрелая бражка подается на перегонку. При брожении в аппаратах поддерживается определенная температура: в первом - 26 - 27°С, во втором - 27, в третьем - 29 - 30, в последующих - 27-28°С.

Выделяющийся при брожении диоксид углерода вместе с парами спирта из бродильных аппаратов поступает в специальные ловушки, и которых происходит растворение спирта и отделение диоксида углерода. Водно-спиртовая жидкость из ловушки направляется вместе с бражкой на перегонку, а диоксид углерода - в специальный цех для получения сухого льда или жидкого диоксида углерода.

Зрелая бражка должна соответствовать установленным нормам. Крепость бражки (содержание этилового спирта в объемных процентах) должна находиться в пределах 8,0-9,5 об.%: содержание несброженных Сахаров не должно превышать 0,4 - 0,5%; кислотность зрелой бражки не должна превышать 0,5-0,6 град.

4 . Отгонка спир та из бражки и его ректификация

Получаемая в результате брожения зрелая бражка имеет сложный состав. Кроме воды и спирта она содержит различные органические и неорганические соединения: сахара, декстрины, минеральные вещества, летучие соединения (эфиры, спирты, альдегиды, кислоты) и др. Состав и содержание примесей зависит от вида сырья, его качества, режимов его переработки в ходе технологического процесса.

Для выделения спирта из бражки и его очистки применяется ректификация. Ректификацией называется процесс разделения смеси, состоящей из двух или большего числа компонентов, кипящих при разных температурах. При кипении такой смеси компонент с более высокой упругостью пара (более летучий) переходит в паровую фазу в относительно больших количествах, а паровая фаза обогащается более летучим компонентом. Температура кипения этого компонента при постоянном давлении ниже. Поэтому при кипении смеси летучих компонентов паровая фаза обогащается компонентом, имеющим более низкую температуру кипения. В водно-спиртовом растворе упругость паров спирта при любой температуре значительно выше упругости паров воды. Вследствие этого содержание спирта в парах больше, чем в кипящем водно-спиртовом растворе.

Очистка спирта от примесей путем перегонки основана на различии коэффициентов их испарения. Коэффициентом испарения называется отношение концентрации данного вещества в паровой фазе к концентрации в жидкой фазе. Коэффициенты испарения отдельных примесей отличаются один от другого и изменяются в зависимости от содержания этилового спирта. Для определения возможности очистки этилового спирта от примесей необходимо сравнить коэффициент испарения примесей с коэффициентом испарения этилового спирта.

При коэффициенте ректификации, равном единице, перегонка неэффективна, так как дистиллят после нее остается без изменения. Если коэффициент ректификации больше единицы, то в дистилляте больше примесей, чем в первоначальной смеси. Если коэффициент ректификации меньше единицы, то в дистилляте меньше примесей, чем в перегоняемой смеси. Для головных примесей коэффициент ректификации больше единицы, для хвостовых - меньше.

Очистку спирта-сырца от примесей производят в настоящее время преимущественно на ректификационных установках непрерывного действия, в которых спирт-сырец освобождается от примесей в соответствии со значениями коэффициентов испарения. Такие установки используются на ликеро-водочных заводах, где основным сырьем является спирт-сырец.

Ректификованный спирт в настоящее время на спиртовых заводах получают непосредственно из бражки на брагоректификационных установках косвенного действия. В установку входят три колонны: бражная. операционная и ректификационная. В бражной колонне из бражки выделяют этиловый спирт и летучие примеси, в операционной отделяют головные примеси, в ректификационной получают ректификованный спирт. В состав установки входят две дополнительные колонны - сивушная и окончательная. Сивушная колонна предназначена для выделения фракции высших спиртов (сивушное масло) и их концентрации, а окончательная колонна - для дополнительного освобождения этилового спирта от примесей.

На установке косвенного действия процесс ректификации осуществляется следующим образом. Бражку подогревают до 90°С в бражном подогревателе и подают на верхнюю тарелку бражной колонны, в которую снизу поступает греющий пар. Пары, поднимающиеся из бражной колонны, поступают в конденсатор через бражный подогреватель, где отдают тепло поступающей в бражную колонну зрелой бражке. В конденсаторе пар полностью конденсируется и полученный конденсат крепостью 45 - 55 об.% поступает в операционную колонну.

Заключение

спирт этиловый гидролиз ректификация

Производство качественного пищевого спирта в нужных объемах нуждается в постоянном наличии сырья, будь то зерно или картофель.

Технология производства спирта - это многоэтапный технологический процесс.

Технология производства спирта состоит из различных по характеру и происхождения операциям от механических (подготовка сырья) до тепло-массообменных (ректификация), а также использование ферментов микробиологического и биологического происхождения вместе с дрожжами.

Не смотря на давность становления технологии производства, существует множество способов усовершенствования производства и увеличения выхода и качества продукции: модернизации старого оборудования, разработка новых аппаратов, улучшение штаммов микроорганизмов и дрожжей, ведение селекционной работы по получению высококачественного сырья.

Литература

Общая химическая технология: Учебник для химико-технологических специальностей. Т. 2.

Важнейшие химические производства. / Мухленов И.П., Авербух А.Я., Кузнецов Д.А. и др. Под редакцией И.П. Мухленова. - М.: Высш. шк., 1984.

Тимофеев В.С., Серафимов Л.А. Принципы технологии основного органического и нефтехимического синтеза. - М.: Химия, 1992.

Кононова Г.Н., Сафонов В.В. Учебно-методическое пособие «Производство этилового спирта прямой гидратацией этилена».

Размещено на Allbest.ru

Подобные документы

    Получение этилового спирта сбраживанием пищевого сырья. Гидролиз древесины и последующее брожение. Получение этилового спирта из сульфитных щёлоков. Сернокислотный способ гидратации этилена. Физико-химические основы процесса. Отделение гидратации этилена.

    дипломная работа , добавлен 16.11.2010

    Исходное сырье для производства этилового спирта и способы его получения. Физико-химическое обоснование основных процессов производства этилового спирта. Описание технологической схемы процесса производства, расчет основных технологических показателей.

    курсовая работа , добавлен 04.01.2009

    Технологические особенности и этапы, сырьевая и материальная база для изготовления этилового спирта в химической промышленности, его главные физические и химические свойства, направления практического использования. Гидратация этилена и ее схема.

    курсовая работа , добавлен 16.10.2011

    Определение спиртов, общая формула, классификация, номенклатура, изомерия, физические свойства. Способы получения спиртов, их химические свойства и применение. Получение этилового спирта путем каталитической гидратации этилена и брожения глюкозы.

    презентация , добавлен 16.03.2011

    Описание процесса производства изопропилового спирта методом сернокислой гидратации пропилена. Характеристика сырья и готовой продукции. Расчет холодильника, материального и теплового баланса колонны. Технико-экономические показатели работы установки.

    дипломная работа , добавлен 27.11.2014

    Методы получения целевого продукта. Термодинамический анализ реакции. Восстановление карбоновых кислот. Реакция глицерина с щавелевой кислотой. Гидрирование пропаргилового спирта. Селективное гидрирование акролеина или пропаргилового спирта над палладием.

    дипломная работа , добавлен 18.05.2011

    Основные химические свойства ацетона и изопропилового спирта, области применение и влияние на человека. Получение изопропилового спирта из ацетона. Тепловой и материальный баланс адиабатического РИВ и РПС. Программы расчёта и результаты, выбор реактора.

    курсовая работа , добавлен 20.11.2012

    Производство ацетона брожением крахмала. Производство ацетона из изопропилового спирта. Обоснование создания эффективной ХТС. Определение технологической топологии ХТС. Построение математической модели ХТС. Свойства и эффективность функционирования.

    курсовая работа , добавлен 12.02.2009

    Физические и химические свойства спиртов, их взаимодействие с щелочными металлами. Замещение гидроксильной группы спирта галогеном, дегидратация, образование сложных эфиров. Производство этилового, метилового и других видов спиртов, области их применения.

    презентация , добавлен 07.04.2014

    Промышленное производство бутадиена из этилового спирта в присутствии бифункционального катализатора. Характеристика бутадиена и область его применения. Подготовка алюмохромового катализатора к работе. Продукт термохимической активации гидраргиллита.

Прочитайте:
  1. II. Технология пневмо-вакуумного формования изделий из пластмасс.
  2. Альфа и бета-адреномиметики. Основные эффекты, применение.
  3. Аминокислотный спектр гидролизата коллагена (процент веса на вес)
  4. Анатоксины, их получение, титрование и практическое применение.
  5. Анатоксины. Получение, очистка, титрование, применение.
  6. Антитоксические сыворотки. Получение, очистка, титрование, применение. Осложнения при использовании и их предупреждение.
  7. Аппаратно-программного комплекта (АПК) (технология виртуальных приборов).
  8. Билет №51 препараты мужских половых гормонов. Механизм действия. применение. препараты. понятие об анаболитиках
  9. Билет №51 препараты мужских половых гормонов. Механизм действия.применение. препараты. понятие об анаболитиках

Крахмал – это главный резервный полисахарид растений, являющийся наиболее важным углеводным компонентом пищевого рациона. Запасается крахмал в семенах хлебных злаков, клубнях, корневищах в виде крахмальных зерен, которые в зависимости от вида растения имеют различную форму (сферическая, яйцевидная, чечевицеобразная или неправильная) и размер (1 до 150 мкм, в среднем 30-50 мкм).

Крахмальные зерна различных видов растений:

А - картофель; Б - пшеница; В - овес; Г - рис; Д - кукуруза; Е - гречиха.

1 - простое крахмальное зерно, 2 - сложное, 3 - полусложное.

Крахмал имеет сложное строение и состоит из двух гомополисахаридов: растворимой в воде амилозы и нерастворимого амилопектина. Их соотношение в крахмале может различаться в зависимости от растения и типа ткани, из которой он был выделен (амилоза 13-30%; амилопектина 70-85%).

Амилоза состоит из неразветвленных (линейных) цепей, включающих 200-300 остатков глюкозы, связанных α(1→4) гликозидной связью. Благодаря α-конфигурации при С-1, цепи образуют спираль диаметром 13 нм, в которой на один виток приходится 6-8 остатков глюкозы. Молекулярная масса составляет 50000Да.

Амилопектин имеет разветвленную структуру, у которой в среднем один из 20-25 остатков глюкозы содержит боковую цепь, присоединенную α(1→6) гликозидной связью. При этом формируется древовидная структура. Молекулярная масса составляет достигает 1-6 млн. Да.

Гидролиз крахмала присутствует во многих пищевых технологиях как один из необходимых процессов, обеспечивающих качество конечного продукта. Например:

В хлебопечении – процесс тестоприготовления и выпечки хлеба;

В производстве пива – получение пивного сусла и сушка солода;

В производство кваса;

В производстве спирта – подготовка сырья для брожения;

В получении различных сахаристых крахмалопродуктов – глюкозы, патоки, сахарных сиропов.

Существует два метода гидролиза крахмала:

Кислотный – под действием минеральных кислот;

Ферментативный - под действием ферментных препаратов.

При гидролизе крахмала под действием кислот сначала имеет место ослабление и разрыв ассоциативных связей между макромолекулами амилозы и амилопектина. Это сопровождается нарушением структуры крахмальных зерен и образованием гомогенной массы. Далее идет разрыв α(1→4) и α(1→6)-гликозидных связей с присоединением по месту разрыва молекулы воды. В процессе гидролиза нарастает число свободных альдегидных групп, уменьшается степень полимеризации. На промежуточных стадиях образуются декстрины, три и тетрасахара, мальтоза. Конечным продуктом гидролиза является глюкоза. Кислотный гидролиз имеет ряд существенных недостатков, обуславливаемых использованием высоких концентраций кислот и высокой температуры (свыше 100 °С), что приводить к образованию продуктов термической деградации и дегидратации углеводов, реакциям трансгликозилирования и реверсии.

По сравнению с кислотным гидролизом ферментативный гидролиз является более перспективным и имеет следующие преимущества:

1) Высокое качество изготовляемого продукта, т.к. образуется меньше побочных продуктов;

2) Специфичность действия ферментов позволяет получить продукт с заданными физическими свойствами (например сладостью);

3) Достигается высокий выход продукта с меньшими экономическими затратами.

Ферментативный гидролиз крахмала осуществляется с помощью амилолитических ферментов. К этой группе относятся α-амилаза, β-амилаза, глюкоамилаза, пуллуланаза и некоторые другие ферменты. Каждый из них имеет свои специфические особенности.

α-амилаза – эндофермент, гидролизующий α (1-4)-гликозидные связи внутри молекулы амилозы или амилопектина, в результате образуются декстрины – продукты неполного гидролиза крахмала и малое количество глюкозы и мальтозы:

α-амилаза найдена у животных (слюна и поджелудочная железа), у высших растений (проросшие семена ячменя, пшеницы, ржи, проса) и у микроорганизмов (грибов рода Aspergillus, Rhizopus, бактерий рода Bacillus subtilis).

β-амилаза – экзофермент, гидролизует α (1-4)-гликозидные связи с нередуцирующих концов молекулы амилозы, амилопектина с образованием мальтозы (54-58%), т.е. проявляет выраженную осахаривающую активность. Другим продуктом реакции является β-декстрин (42-46%). Данный фермент распространен в тканях высших растений.

Глюкоамилаза является экзоферментом, действуя с нередуцирующих концов молекулы амилозы и амилопектина, отщепляет молекулы глюкозы гидролизуя α (1-4)- и α (1-6)-гликозидные связи. Данный фермент наиболее часто встречается у микромицетов рода Aspergillus, Rhizopus.

Механизм действия различных типов амилаз на крахмал:

Технология получения крахмала.

Сырьем для промышленного получения крахмала служат картофель, зерна кукурузы, пшеницы, риса, сорго. Расмотрим технологию производства картофельного крахмала. Она включает следующие стадии:

Мойка картофеля от грязи и посторонних включений на картофелемойке;

Взвешивание;

Тонкое измельчение картофеля на скоростных картофелетерках с получением картофельной кашки (чем сильнее он будет измельчен, тем полнее будет выход крахмала из клеток, но при этом важно не повредить сами зерна крахмала);

Обработка картофельной кашки диоксидом серы или сернистой кислотой (для повышения качества крахмала, его белизны и предупреждения развития микроорганизмов);

Разделение кашки с использованием центрифуг или системы гидроциклонов;

Рафинирование крахмального молока – очистка крахмала от мезги на рафинировальном сите;

Промывка крахмала в гидроциклоне.

В результате получают сырой крахмал с содержанием влаги 40-52%. Он не подлежит длительному хранению в отличие от сухого получение которого состоит из следующих операций: механическое удаление избыточной влаги, сушка, прессование и упаковывание.

При производства целого ряда продуктов эффективно использование модифицированных крахмалов:

- Набухающий (предварительно клейстеризованный) крахмал получают высушиванием клейстера на специальных сушилках с последующим измельчением пленки в порошок, частицы которого набухают при смачивании водой и увеличиваются в объеме. Набухающий крахмал используют в пищевой промышленности (продукты быстрого приготовления, стабилизаторы и загустители в пищевых продуктах без нагревания).

- Окисленный крахмал получают путем окисления крахмала различными окислителями (KMnO 4 , KBrO 3 и др.). В зависимости от способа окисления продукция имеет различную вязкость и желирующую способность. Их применяют в бумажной промышленности для повышения прочности бумаги в качестве дубильного вещества, а при низкой степени окисления (до 2 %) в пищевой промышленности. Так один из видов окисленного крахмала - желирующий применяют в качестве желирующего средства взамен агара и агароида при производстве мармеладных изделий.

- Замещенные крахмалы:

Монокрахмалфосфаты (монофосфатные эфиры крахмала) получают реакцией сухой смеси крахмала и кислых солей орто-, пиро- или триполифосфата при повышенной температуре. По сравнению с обычным крахмалом они образуют стабильные клейстеры, отличающиеся повышенной прозрачностью, устойчивостью к замораживанию и оттаиванию.

Дикрахмалфосфаты (поперечно-сшитые крахмалы) могут быть получены реакцией крахмала с триметафосфатом натрия, оксихлоридом фосфора и др.. Они образуют клейстеры, устойчивые к нагреванию и механическому воздействию. Их используют при производстве майонезов, кондитерских изделий, салатных приправ, мясных изделий и др.

Ацетилированный крахмал (ацетат крахмала) может быть получен обработкой крахмала уксусной кислотой или ацетангидридом. Они обладает способностью образовывать стабильные прозрачные клейстеры, при высыхании которых образуются прочные пленки. В пищевой промышленности их используют в качестве загустителей, а также при производстве замороженных продуктов, инстант-порошках и т.д.

Подготовка ферментных препаратов: глубинную культуру плесневых грибов или бактерий дезинфицируют формалином; сухую поверхностную культуру смешивают с водой температурой 28-30 єС в соотношении 1:1. Затем ее тщательно измельчают на дробилках, добавляют воду в количестве 3-4 дм 3 на 1 кг препарата, дезинфицируют раствором формалина, выдерживают 25-30 мин и направляют на осахаривание.

Расход поверхностной культуры - 5 % к массе крахмала разваренной массы. Можно использовать смесь сухой культуры ферментных препаратов и солода. Их вместе измельчают и готовят суспензию наподобие солодового молока. При осахаривании крахмала в спиртовом производстве необходимо достичь полного его гидролиза до сбраживаемых сахаров. На практике осахаривание протекает на нескольких технологических стадиях:

  • - при разваривании сырья;
  • - при осахаривании при оптимальной температуре для действия ферментов;
  • - при брожении (температура благоприятная для жизнедеятельности дрожжей, но не ферментов).

При разваривании под действием бактериальной б-амилазы гидролиз крахмала незначителен, образуются, главным образом, декстрины.

На стадии осахаривания образуется максимальное количество сбраживаемых сахаров. Крахмал гидролизуется на 70-75 % до глюкозы и мальтозы и 25-30 % предельных декстринов. Причем если используется в качестве осахаривающего материала солод, то образуется 71-76 % мальтозы и 24-29 % глюкозы от суммы сбраживаемых сахаров; если применяют ферментные препараты, то 14-21 % мальтозы и 79-80 % глюкозы.

Некрахмальные полисахариды под действием ферментов солода почти не гидролизуются, ферментными препаратами гидролизуются в незначительной степени, что является положительным, так как возрастает количество сбраживаемых сахаров.

При осахаривании гидролизуются также белки под действием протеолитических ферментов до пептонов, полипептидов аминокислот (необходимы для питания дрожжей). Причем солод при гидролизе дает больше аминокислот, чем ферментные препараты.

Предельные декстрины доосахариваются до мальтозы в процессе брожения декстриназой солода или глюкоамилазой ферментных препаратов.

На скорость осахаривания крахмала влияют температура и рН среды. Оптимальная температура для действия амилазы солода на 2 %-й раствор картофельного крахмала составляет 53-58 єС. Однако для клейстеризации нерастворенного крахмала, вносимого с солодом, и стерилизации замеса необходима более высокая температура. При таких температурах (свыше 56 єС) амилаза инактивируется, но медленно. Поэтому осахаривание проводят при температуре 60-62 єС. Эта температура хотя и выше оптимальной, но присутствующие в заторе защитные вещества (сахара, декстрины, пептиды) предохраняют амилазу от инактивации. рН затора 4,9-5,6.

Осахаренное сусло должно иметь следующие показатели:

Полнота осахаривания определяется по йодной пробе. При использовании в качестве осахаривающего материала солодового молока цвет раствора йода с каплей фильтрата не должен изменяться. Красный цвет свидетельствует о наличии в сусле декстринов, сине-фиолетовый - о присутствии неосахаренного крахмала. Применение ферментных препаратов для осахаривания может оставлять окраску фильтрата с йодом светло-коричневой.

Доброкачественность - отношение общего количества содержащихся в сусле сбраживаемых углеводов к общей сумме растворимых сухих веществ, выраженное в процентах. Доброкачественность должна быть в пределах 76-78 %.

Кислотность выражают в градусах кислотности. 1є кислотности соответствует 1 см 3 раствора NаОН концентрацией 1 моль/дм 3 , израсходованного на нейтрализацию 20 см 3 раствора (сусла, бражки). Кислотность должна быть в пределе 0,2-0,3є, что соответствует рН 4,9-5,6. Кислотность сусла меньше 0,2є может привести к развитию посторонней микрофлоры, выше 0,4є - к инактивации ферментов.

Ферменты животного происхождения (пепсин, трипсин и др.) преимущественно получают из органов, в которых протекают интенсивные биохимические процессы (из слизистой желудка, печени, почек, селезенки и т. д.).

Источником растительных ферментов может быть пророщенное зерно (солод) различных злаков. В тропических и субтропических странах для промышленного производства ферментов в качестве сырья используют латекс дынного дерева (получают фермент папаин), ананас (бромелин), инжир (фицин), хрен (пероксидазу).

Ферменты различного происхождения используют либо непосредственно как технические ферментные препараты, либо служат исходным материалом для получения очищенных препаратов.

В связи с все возрастающими потребностями промышленности в ферментных препаратах растительные и животные источники их получения не устраивают производителей по ряду причин.

Органы животных можно получить только на мясокомбинатах, при этом возникает проблема их консервирования и хранения. Требуются большие временные и материальные затраты на выращивание самих животных.

Многие вышеназванные недостатки устраняются использованием для получения ферментов микроорганизмов (бактерий, плесневых грибов, дрожжей). Преимущества данного источника: микроорганизмы быстро растут на дешевых питательных средах; содержание фермента в расчете на единицу белка биомассы значительно больше; путем генетических изменений можно увеличить выход нужного фермента; выделить ферменты с улучшенными свойствами __ устойчивые к температуре, кислотам, щелочам. Микробные ферменты аналогичны ферментам растений и животных, но есть виды, которые не встречаются ни в растениях, ни у животных.

В бродильных производствах используют ферменты растительного (в виде солода) и микробного происхождения.

Контрольные вопросы

1 Дайте определение фермента.

2 Приведите основные характерные особенностеи ферментов как катализаторов.

3 Приведите классификацию ферментов.

4 Объясните, что такое субстрат, активатор, ингибитор, активный центр, ферон, простетическая группа.

5 Охарактеризуйте влияние температуры, рН, концентрации фермента и субстрата, присутствие активаторов и ингибиторов на скорость ферментативной реакции.

6 Перечислите источники ферментов. Дайте им характеристику.

2.7 ГИДРОЛИТИЧЕСКИЕ ФЕРМЕНТЫ

1 Гидролиз крахмала.

2 Гидролиз белков.

3 Гидролиз некрахмальных полисахаридов.

4 Ферментные препараты: характеристика и номенклатура.

5 Иммобилизованные ферменты

1 Гидролиз крахмала

Большинство промышленно важных ферментов относятся к классу гидролаз, потребность в которых исчисляется десятками тысяч тонн. В технологии бродильных производств гидролазам принадлежит огромная роль, так как именно они отвечают за подготовку сырья к сбраживанию.

К гидролазам относятся амилолитические, протеолитические, цитолитические, липолитические, пектолитические и другие ферменты.

Гидролиз крахмала осуществляется амилолитическими ферментами.

Крахмал - полисахарид, состоящий в свою очередь из двух полисахаридов, которые отличаются степенью полимеризации и типом строения – амилозой (примерное содержание 20-30 %) и амилопектином (%). Структурной единицей крахмала, а, следовательно, амилозы и амилопектина, является глюкоза, остатки которой соединены между собой α-1,4 и α-1,6- глюкозидньми связями.

Амилоза имеет линейное строение, связь между остатками глюкозы α-1,4 (между 1-м и 4-м углеродными атомами). Растворима в горячей воде без набухания. Образует растворы невысокой вязкости. Молекулярная масса от 60 до 600. С йодом дает синее окрашивание.

о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-

Рисунок 16 – Строение амилозы

Амилопектин представляет собой разветвленную цепь, состоящую из большого числа глюкозных остатков (около 2500). Главная цепочка состоит из 25-30 остатков, а боковые __ из 15-18. В амилопектине остатки глюкозы на линейных участках связаны α-1,4- связью, а в местах ветвления связь α-1,6. В воде не растворяется. При нагревании образует клейстер. С йодом дает фиолетовое окрашивание.

Гидролиз крахмала и продуктов его частичного гидролиза, а также гликогена, осуществляется амилазами (α-амилазой, β-амилазой, глюкоамилазой и другими амилолитическими ферментами).

α- амилаза (декстриногенамилаза) - по механизму действия относится к эндоферментам, т. е. действует на молекулу субстрата изнутри, беспорядочно, что приводит к быстрому снижению вязкости раствора крахмала. Гидролизует связи α-1,4 в полисахаридах, содержащих три и более остатков Д-глюкозы.

Амилоза под действием α-амилазы сначала распадается на декстрины среднего размера, которые затем расщепляются на низкомолекулярные декстрины и мальтозу. При длительном действии фермента амилоза практически полностью превращается в мальтозу и небольшое количество глюкозы.

Действие α-амилазы на амилопектин приводит к образованию мальтозы и низкомолекулярных декстринов.

Общая схема гидролиза крахмала α-амилазой:

α-амилаза

Крахмал низкомолекулярные декстрины

(много)+ мальтоза (мало) + глюкоза (очень мало)

Оптимальные условия действия фермента: рН 5,7, температура 70 °С.

β-амилаза (сахарогенамилаза) __ экзофермент, катализирует гидролиз связей α -1,4 в полисахаридах, последовательно отщепляя остатки мальтозы от нередуцирующего (где отсутствует свободная альдегидная группа) конца цепей. β-амилаза расщепляет амилозу полностью (если количество молекул глюкозы в ней четное) в мальтозу, если нечетное, то наряду с мальтозой образуется мальтотриоза.

В амилопектине β-амилаза действует лишь на свободные нередуцирующие концы глюкозных цепочек с образованием мальтозы и высокомолекулярных декстринов. Действие ее прекращается при приближении к разветвлению (где имеется связь α-1,6) на расстоянии одной молекулы глюкозы. Образовавшиеся декстрины гидролизуются дальше α-амилазой до декстринов меньшей молекулярной массы.

Общая схема гидролиза крахмала под действием β-амилазы:

β-амилаза

Крахмал высокомолекулярные декстрины (много) + мальтоза (много) + мальтотриоза (мало)

Оптимальные условия действия β-амилазы: рН 4,7, температура 63 °С.

Таким образом, при совместном действии α- и β-амилаз на крахмал только 80 % его превращается в сбраживаемые сахара (мальтозу, глюкозу, мальтотриозу) и 20 % __ в декстрины с 5-8 глюкозными остатками.

Предельная декстриназа __ эндофермент, неупорядоченно гидролизует в крахмале, гликогене, декстринах α-1,6-глюкозидную связь. Чаще всего образуется мальтотриоза. Оптимальные параметры действия: рН 6,5, температура 50оС.

Глюкоамилаза __ экзофермент, гидролизует связи α-1,4 и α-1,6 в полисахаридах, последовательно отщепляя по одному остатку глюкозы с нередуцирующих концов цепей. Связи α-1,4 в крахмале разрушаются быстрее, чем α-1,6. Оптимальные условия: рН 4,5-4,6, температура 55-60°С.

В различных бродильных производствах к гидролизу крахмала предъявляют разные требования. В производстве спирта необходимо прогидролизовать крахмал как можно глубже, чтобы получить больше сбраживаемых сахаров, а, следовательно, более высокий выход спирта.

В производстве пива полный гидролиз крахмала не осуществляют, так как в среде кроме сбраживаемых сахаров (нужных для образования определенного количества спирта) должны находиться низкомолекулярные декстрины, придающие полноту вкуса и вязкость пиву.

В зависимости от источника фермента свойства амилаз и других ферментов могут сильно отличаться не только по механизму действия и конечным продуктам реакции, но и оптимальным условиям для проявления максимальной активности. Выше были приведены оптимальные параметры действия для α- и β-амилаз солода.

Бактериальные амилазы отличаются от солодовых большей термостабильностью. Оптимальные параметры действия: температура 80-85 оС (иногда до 90-95 оС), рН 5,5-5,8.

Грибные амилазы (к ним, в частности, относится глюкоамилаза) более устойчивы к реакции среды: оптимумы температуры 50-60 оС, рН 4,2-4,7.

Таким образом, бактериальные амилазы более термостабильны, а грибные амилазы действуют в более кислой среде в сравнении с солодовыми ферментами.

2 Гидролиз белков

Ферментативный гидролиз белков происходит под действием протеолитических ферментов . Они классифицируются на эндо - и экзо-пептидазы. Ферменты не имеют строгой субстратной специфичности и действуют на все денатурированные и многие нативные белки, расщепляя в них пептидные связи - СО-NH-.

Эндопептидазы (протеиназы) – гидролизуют непосредственно белок по внутренним пептидным связям. В результате образуется значительное количество полипептидов и мало свободных аминокислот. Подразделяются в зависимости от оптимума рН на кислые, нейтральные и щелочные. Оптимальные условия действия кислых протеиназ: рН 4,5-5,0, температура 45-50 °С (до 60 оС).

Экзопептидазы (пептидазы) действуют, главным образом, на полипептиды и пептиды, разрывая пептидную связь с конца. Основные продукты гидролиза __ аминокислоты. Данную группу ферментов делят на амино-, карбокси-, дипептидазы.

Аминопептидазы катализируют гидролиз первой пептидной связи, находящейся с N-конца.

H2N - СН - С - - NH - СН - С....

Карбоксипептидазы осуществляют гидролиз первой пептидной связи, находящейся рядом со свободной карбоксильной группой.

СО - NH - С – Н

R

Дипептизады катализируют гидролитическое расщепление дипептидов на свободные аминокислоты. Дипептидазы расщепляют только такие пептидные связи, по соседству с которыми находятся одновременно свободные карбоксильная и аминная группы.

дипептидаза

NH2CH2CONHCH2COOH + Н2О 2CH2NH2COOH

Глицин-глицин Гликокол

Оптимальные условия действия: рН 7-8, температура 40-50 оС. Исключение составляет карбоксипептидаза, проявляющая максимальную активность при температуре 50 оС и рН 5,2.

Недостаточный гидролиз высокомолекулярных азотистых веществ отрицательно влияет на коллоидную стойкость напитков, продукты гидролиза белков (аминокислоты) необходимы для питания дрожжей, пептиды __ формируют полноту вкуса пива, его пеностойкость и пенообразование.

3 Гидролиз некрахмальных полисахаридов

К некрахмальным полисахаридам относятся целлюлоза, гемицеллюлозы, пектиновые и гумми-вещества.

Целлюлоза __ высокомолекулярный полисахарид. Представляет собой длинную неразветвленную цепь остатков глюкозы, соединенных связями β-1,4. Нерастворима в воде. Входит в состав клеточных стенок растений.

Ферментативный гидролиз целлюлозы осуществляют целлюлазы (эндо - и экзоглюканазы ). Продукты гидролиза __ глюкоза и целлобиоза. Однако целлюлоза является сложным субстратом для действия ферментов, так как нерастворима в воде и содержит большое количество примесей. В настоящее время в промышленности полный гидролиз целлюлозы может быть проведен только концентрированными кислотами в очень жестких условиях (высокой температуре и давлении). При этом образуется только Д-глюкоза, а, кроме того, ряд вредных продуктов, от которых необходимо освобождаться.

Гемицеллюлозы также принадлежат к группе полисахаридов. Они не растворимы в воде, но растворимы в щелочах и легче гидролизуются кислотами, чем целлюлоза. Гемицеллюлозы делят на две группы: гексозаны и пентозаны, состоящие из остатков различных моносахаридов и их производных.

Гексозаны __ высокомолекулярные соединения. Могут быть линейные или разветвленные. Основным представителем является β-глюкан, в котором остатки глюкозы соединены β-1,3 и β-1,4-глюкозидными связями.

Пентозаны имеют ветвистое строение, состоят из остатков пентоз (сахаров с пятью атомами углерода) __ ксилозы, арабинозы, а также небольшого количества галактуроновой кислоты. Основной тип связей __ β-1,4, в местах ветвления __ β-1,3. Представителями пентозанов являются ксиланы, арабаны и арабиноксиланы.

Гумми-вещества близки по составу к гемицеллюлозам. Это продукты незавершенного гидролиза или синтеза гемицеллюлоз. Состоят из глюкозы, галактозы, ксилозы, арабинозы и остатков уроновых кислот. Растворимы в горячей воде, дают растворы с высокой вязкостью.

Гидролиз всех вышеназванных соединений идет под действием трех групп цитолитических ферментов: β-глюканаз (например, эндо-β-1,3-глюканаза; экзо-β-1,4-глюканаза), β-ксиланаз и β-глюкозидазы (экзофермент, расщепляет с нередуцирующего конца β-1,4-связь, с образованием глюкозы).

В результате гидролиза некрахмальных полисахаридов образуются глюкоза, арабиноза, ксилоза, уроновые кислоты, декстрины. Оптимальные условия действия цитолитических ферментов: рН 4,5-5,0, температура °С.

Гидролиз некрахмальных полисахаридов особенно интенсивно протекает при солодоращении, что приводит к растворению эндосперма (цитолиз). В пивоварении недостаточный гидролиз этих веществ затрудняет процесс фильтрования сусла и пива, отрицательно влияет на удаление мути, коллоидную стойкость напитка.

Пектиновые вещества __ высокомолекулярные соединения, полисахариды, состоящие из остатков галактуроновой или глюкуроновой кислот, соединенных связями α-1,4. При этом образуется цепочка полигалактуроновой кислоты.

В составе этой цепочки могут быть ответвления в виде остатков метилового спирта СН3О-, часть водородных атомов карбоксильных групп может быть замещена катионами металлов. К этой же цепи могут присоединяться остатки сахаров: галактозы, арабинозы, рамнозы в виде полисахаридной цепочки. Сахаридный комплекс образует нейтральную фракцию пектиновых веществ, а полигалактуроновая цепочка с метоксильными группами __ кислую фракцию.

К пектиновым веществам относят протопектин, пектин, пектиновые кислоты.

Протопектин, или нерастворимый пектин __ нерастворим в воде, имеет сложный химический состав, недостаточно хорошо изучен. Возможно это соединение пектина с другими веществами: целлюлозой, гемицеллюлозой, белками.

Пектин , или растворимый пектин __ полигалактуроновые кислоты, карбоксильные группы которых в различной степени соединены с остатками метилового спирта, т. е. этерифицированы. Молекулярная масса от 01.01.0100. Растворяется в горячей воде. В присутствии сахара и кислот образует студни.

Пектиновые кислоты – высокомолекулярные полигалактуроновые кислоты, не содержащие этерифицированных групп. Плохо растворяются в воде, студни не образуют. Пектиновые кислоты могут образовывать соли с ионами многовалентных металлов, в результате образуются нерастворимые соединения, которые выпадают в осадок.

Пектиновые вещества уменьшают выход соков из плодово-ягодного сырья, затрудняют их осветление, снижают стойкость вин и ликероводочных изделий к коллоидным помутнениям.

Гидролиз пектиновых веществ происходит под действием пектолитических ферментов : протопектиназы, пектинэстразы, полигалактуроназы.

Протопектиназа расщепляет в протопектине связи между метоксилированной полигалактуроновой кислотой и связанными с ней арабаном и галактаном. В результате образуется метоксилированная полигалактуроновая кислота, которая представляет собой растворимый пектин.

Арабан Метоксилированная Галактан

полигалактуроновая кислота

Рисунок 20- Действие протопектиназы

Пектинэстераза (пектаза) принадлежит к группе эстераз и гидролизует эфирные связи растворимого пектина, отщепляя метоксилъные группы от метоксилированной полигалактуроновой кислоты. При этом образуется метиловый спирт (СН3ОН) и полигалактуроновая кислота.

Полигалактуроназа (пектиназа) действует на растворимый пектин, катализируя расщепление α-1,4-глюкозидных связей между остатками галактуроновой кислоты, которые не содержат метоксилъных групп. В результате образуются галактуроновая и полиуроновые кислоты.

По механизму действия различают эндо - и экзополигалактуроназы. Эндополигалактуроназа действует «беспорядочно», разрывает цепь внутри молекулы субстрата, приводит к резкому снижению вязкости растворов.

Экзополигалактуроназа действует с конца цепи, отщепляя галактуроновую кислоту. Под действием этого фермента вязкость снижается незначительно.

Оптимальные условия действия пектолитических ферментов; рН 3,7-4,0, температура 40-50 °С.

4 Ферментные препараты: характеристика и номенклатура

Ферментные препараты широко используются в различных отраслях промышленности. Отличаются они от чистых ферментов тем, что содержат либо один или несколько ферментов с преобладанием какого-либо одного, а также балластные вещества среды, на которой были выращены микроорганизмы – продуценты ферментов.

Для промышленного производства ферменных препаратов используют микроорганизмы, выделенные из природных источников и мутагенные штаммы (получают воздействием химических и физических факторов). Активными продуцентами ферментов являются микроскопические грибы родов Aspergillus (видов oryzae, niger, awamori, batatae, foetidus, flavus и др.), Rhisopus, Penicillium, Fusarium, Trichoderma (вид viride), спороносные бактерии родов Bacillus (видов subtilis, mesentericus, brevis и др.), Clostridium

Наименование препарата начинается с сокращенного названия основного фермента, активность которого преобладает. Затем следует измененное видовое название продуцента и окончание «ин». В наименовании препарата отражается также и способ культивирования микроорганизма-продуцента. При глубинном культивировании после названия ставится буква «Г», при поверхностном – «П».

Условно количество фермента в стандартной культуре обозначается «х». Цифра перед «х» указывает на степень очистки фермента в процессе получения данного препарата.

Например: Амилосубтилин Г10х __ ферментный препарат амилолитического действия, бактериального происхождения, продуцент - бактерии Bacillus subtilis, выращенные глубинным способом, степень очистки 10х, в виде порошка. Пектофоетидин П20х __ высокоочищенный сухой ферментный препарат, обладающий пектолитической активностью, микроорганизм-продуцент __ плесневый гриб Aspergillus foetidus, культивированный поверхностным способом.

Принципиальная схема получения ферментных препаратов приведена на рис.22. Схема очистки фермента от балластных веществ сводится к освобождению его от нерастворимых, сопутствующих растворимых веществ и других ферментов. Из поверхностных культур труднее получить высокоочищенные препараты, так как они содержат много балластных веществ. Из глубинных культур получать очищенные препараты легче. Схема очистки включает различные методы (концентрирование, диализ, осаждение органическими растворителями, солями, гель-фильтрование и др.).

Выпускаемые ферментные препараты представляют собой либо жидкости, либо порошки белого, серого или желтоватого цвета с определенной стандартной активностью ферментов.

Номенклатура отечественных ферментных препаратов:

Пх и Гх - неочищенная стандартная исходная культура продуцента.

П2х и Г2х – жидкий неочищенный концентрат растворимых веществ исходной культуры, освобожденный от нерастворимой части (П2х – концентрат с содержанием сухих веществ 50 %, Г2х – не более 40 %).

ПЗх и ГЗх __ сухие ферментные препараты, полученные высушиванием путем распыления неочищенного раствора фермента (экстракта поверхностной культуры или фильтрата глубинной культуры).

Препараты с маркировкой 2х и 3х являются техническими .

П10х и Г10х __ сухие очищенные препараты, полученные осаждением ферментов из водных растворов органическими растворителями или методом высаливания.

П15х, Г15х __ очищенные ферментные препараты, получены различными методами очистки и фракционирования ферментов.

П20х, Г20х __ высокоочищенные , но не кристаллические ферментные препараты, содержащие до 20-25 % балластных веществ, полученные методом концентрирования и очистки на ультрафильтрационных установках с последующей распылительной сушкой.

Препараты с индексом выше 20х в номенклатуре не используются, так как речь в этих случаях идет о высокоочищенных и даже гомогенных ферментных препаратах, которые именуются в классификации ферментов.

Любой ферментный препарат должен быть охарактеризован по его ферментативной активности, обычно выражаемой в стандартных единицах. Стандартная единица активности __ это такое количество фермента, которое катализирует превращение одного микромоля субстрата за единицу времени (1мин.) в стандартных условиях (температура 30 оС).

В бродильных производствах широко используются следующие ферментные препараты:

Амилолитического действия (Амилоризин Пх, П3х, П10х; Амилосубтилин Г3х, Г10х, Г20х; Глюкоаваморин Пх и др.);

Протеолитического действия (Протосубтилин Г20х, Протооризин П10х);

Цитолитического действия (Цитороземин Пх, П10х; Целловиридин Г3х, П10х; Целлоконингин П10х и др.);

Пектолитического действия (Пектаваморин Г3х, Пектофоетидин Г3х, Г10х, Г20х).

В производстве спирта замена солода ферментными препаратами позволяет сэкономить ценное пищевой сырье, снизить капитальные расходы на строительство солодовен, улучшить условия труда работающих, ускорить технологические процессы, увеличить выход готовой продукции .

В пивоварении применение ферментных препаратов позволяет перерабатывать повышенное количество несоложеного сырья, повысить коллоидную стойкость пива.

В производстве соков и вин препараты ферментов применяют для обработки мезги с целью повышения выхода сока, а также для осветления соков и виноматериалов.

5 Иммобилизованные ферменты

В настоящее время ферментные препараты широко применяются в различных отраслях промышленности. Однако ферментные препараты __ дорогостоящие катализаторы. Кроме того, так как они растворимы, использовать их можно только однократно. Поэтому, невозможно перевести периодические процессы на непрерывные, остановить ферментативную реакцию в нужный момент.

Перспективным является использование иммобилизованных ферментов . Они представляют собой нерастворимые биокатализаторы, в которых фермент связан с каким-либо носителем или заключен в матрицы либо микрокапсулы. При этом ферменты сохраняют свою активность и специфичность, становятся более устойчивыми к реакции среды, могут участвовать в непрерывных процессах, использоваться многократно.

Носители, с которым связан фермент, должны быть нерастворимыми, обладать химической и биологической стойкостью, высокой механической прочностью, зернистые носители иметь однородную форму и большую удельную поверхность. В качестве носителей используют природные полимеры (производные целлюлозы, агарозы, декстрана), синтетические (полистирол, акриламид, нейлон), а также пористое стекло, окисленные металлы, глину, силикагелъ, ткань, бумагу и др.

Иммобилизация ферментов может быть осуществлена двумя способами: без образования ковалентных связей между матрицей и белковой молекулой фермента (физические методы) и с образованием ковалентной связи (химические методы).

Физические методы иммобилизации . Для получения стабильных нерастворимых форм ферментов широко используется способность белков адсорбироваться на различных поверхностях. Часто сорбция ферментов бывает малоэффективной из-за того, что близки изоэлектрическая точка белка и оптимум рН каталитической активности. Прочная сорбция наблюдается лишь в тех областях рН, где мала каталитическая активность. Чтобы преодолеть это противоречие, предложен метод иммобилизации предварительно модифицированных (путем введения ионогенных групп) белков. Модификация приводит к сдвигу изоэлектрической точки ферментативного белка, при этом его каталитическая активность практически не меняется. В результате модифицированный фермент хорошо сорбируется на носителях.

Химические методы . Иммобилизация ферментов путем образования новых ковалентных связей является в настоящее время доминирующим способом получения биокатализаторов длительного действия. Преимущества этого способа в том, что фермент не переходит в раствор даже при очень длительном использовании. Химический способ является основным при получении иммобилизованных ферментных препаратов.

Химическая иммобилизация может быть осуществлена как на полимерном носителе, так и за счет поперечной сшивки молекул белка без использования носителя. В последнем случае возможно получать нерастворимые препараты с высокой удельной активностью, однако по своим технологическим свойствам они малоперспективны для промышленного применения.

Традиционным является химический метод образования ковалентной связи между носителем и ферментативным белком за счет химического взаимодействия. Наиболее частыми здесь являются реакции ацилирования, алкилирования, окислительно-восстановительные, радикальные, образования иминов.

Иммобилизованные ферменты по своим свойствам отличаются от нативных, так как в результате иммобилизации изменяется пространственная структура белковой молекулы. Активность иммобилизованных ферментов в большинстве случаев уменьшается за счет модификации молекулы фермента, экранирования активного центра. Но, несмотря на это, иммобилизация приводит к повышению стабильности ферментов в более широком диапазоне рН и температуры, что важно при длительном использовании ферментов, а также к стабильности их при хранении.

Положительным является и то, что иммобилизованные ферменты более устойчивы к действию ингибиторов. Оптимальные значения рН и температуры не меняются. При иммобилизации в пористых носителях ферменты становятся недоступными для действия микроорганизмов, так как размеры пор носителя меньше размеров клеток микроорганизмов.

Контрольные вопросы

1 Поясните роль гидролитичеких ферментов в технологии бродильных производств.

2 Охарактеризуйте действие гидролитических ферментов на крахмал, некрахмальные полисахариды, белки.

3 Укажите оптимальные параметры действия амилолитических, протеолитических, цитолитических ферментов.

4 Назовите основные продукты гидролиза крахмала, белков, гемицеллюлоз, пектиновых и гумми-веществ.

5 Охарактеризуйте роль амилаз, протеаз, цитаз, пектолитических ферментов в производстве напитков брожения .

6 Поясните, чем ферментный препарат отличается от фермента.

7 Как складывается название ферментного препарата.

8 Назовите основные бродильные производства, где используются ферментные препараты, и с какой целью.

9 Что такое иммобилизация ферментов.

10 Какие преимущества имеют иммобилизованные ферменты по сравнению с растворимыми.

3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ

«Общая технология отрасли» (ОТО) является первой среди комплекса профилирующих дисциплин, где студенты знакомятся, что такое технология вообще и технология бродильных производств, в частности. Курс базируется на знаниях, полученных ранее при изучении химии, биохимии, микробиологии, процессов и аппаратов пищевых производств.

Освоение материала данной дисциплины позволяет студенту приобрести знания теоретических основ технологии бродильных производств, закономерностей роста и развития микроорганизмов, характеристик и свойств сырья, ферментов.

Работа по изучению курса ОТО должна быть регулярной, последовательной и систематичной. Необходимо проработать курс лекций, а также специальную литературу, список которой приведен в конце методического комплекса.

Изучение того или иного материала должно быть активным, действенным , т. е. каждое понятие, теоретическое положение, практический прием должны быть поняты и уяснены глубоко и детально.

При изучении курса следует идти от уяснения общего к детальному разбору частного с последующей повторной оценкой общего на более высоком уровне.

Глубину самостоятельного усвоения основного материала можно проверить по вопросам для самоконтроля, приведенным после каждой темы лекций.

4 МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ

Контрольные работы, выполняемые студентами во время самостоятельного изучения дисциплины, дают представление о степени подготовленности студентов, об их умении работать со специальной литературой и излагать материал в письменном виде, и позволяют судить об общей эрудиции и грамотности обучающихся.

Контрольные работы выполняют в виде подробных рукописных или печатных рефератов, иллюстрированных схемами, графиками, диаграммами, рисунками, которые могут быть заимствованы из специальной литературы (учебников, учебных пособий , научных и отраслевых журналов). Недопустимо механическое, дословное переписывание материала из учебников и других литературных источников.

2 Биохимические процессы, идущие в зерне при хранении: послеуборочное дозревание, дыхание, самосогревание.

Вариант 9

1 Строение дрожжевой клетки.

2 Способы хранения зерна.

Вариант 10

1 Химический состав дрожжевой клетки.

2 Режимы хранения зерна.

Вариант 11

1 Химический состав и строение биомембран по современным представлениям.

2 Меласса: характеристика, виды, химический состав.

Вариант 12

1 Способы переноса веществ через мембрану

2 Хмель: характеристика, строение, химический состав, хранение.

Вариант 13

1 Производственная инфекция, ее источники.

2 Картофель: характеристика, строение, химический состав.

Вариант 14

1 Метаболизм дрожжевой клетки.

2 Виноград: строение, химический состав.

Вариант 15

1 Схема спиртового брожения.

2 Виды сырья, применяемые в производстве пива, кваса, спирта, вина, хлебопекарных дрожжей.

Вариант 16

1 Вторичные и побочные продукты спиртового брожения.

Вариант 17

1 Дрожжи верхового и низового брожения, их сравнительная характеристика.

2 Способы и режимы хранения картофеля.

Вариант 18

1 Расы дрожжей, применяемые в производстве спирта, пива, вина, хлебопекарных дрожжей и требования к ним.

2 Доставка и хранение мелассы.

Вариант 19

1 Условия роста и размножения дрожжей. Чистая культура дрожжей.

2 Химизм и основные продукты дыхания.

Вариант 20

1 Функции биомембран.

2 Вредители зерна, борьба с ними.

Вариант 21

1 Показатели общего значения зерновых культур.

2 Влияние рН, активаторов и ингибиторов на жизнедеятельность микроорганизмов.

Вариант 22

1 Показатели технологического значения зерновых культур.

Вариант 12

1 Окисляемость воды. Содержание сухого остатка.

2 Ферментные препараты: их характеристика и номенклатура.

Вариант 13

1 Биологические показатели воды.

2 Применение ферментных препаратов в производстве пива, спирта.

Вариант 14

1Требования к воде в производстве ликероводочных и безалкогольных напитков.

2 Микроорганизмы-продуценты ферментов.

Вариант 15

1 Подготовка воды в бродильных производствах. Коагуляция коллоидов, дезодорация воды, обезжелезивание.

2 Иммобилизованные ферменты.

Вариант 16

1 Способы умягчения воды.

1 Применение ферментных препаратов в производстве вин и ликероводочных изделий.

Вариант 17

1 Способы обеззараживания воды.

2 Принципиальная схема производства ферментных препаратов.

Вариант 18

1Требования к воде в производстве солода.

2 Способы снижения жесткости воды: термический, реагентный, ионообменный.

Вариант 19

1 Способы осветления воды.

2 Механизм действия ферментов.

Вариант 20

1 Ферменты зерновых культур.

2 Показатели воды производственного назначения.

Вариант 21

1Ферменты микроорганизмов.

2 Требования к воде в различных бродильных производствах.

Вариант 22

1 Ферментативный гидролиз крахмала.

2 Способы умягчения воды обратным осмосом, электродиализом.

Вариант 23

1 Ферментативный гидролиз белков.

2 Биологические способы очистки сточных вод.

Вариант 24

1 Гидролиз некрахмальных полисахаридов.

2 Показатели загрязненности сточных вод.

Вариант 25

1 Пектиновые вещества и их гидролиз.

2 Сточные воды предприятий бродильной промышленности.

5 ВОПРОСЫ К ЭКЗАМЕНУ

1 Микроорганизмы, используемые в бродильных производствах.

2 Стадии развития культур микроорганизмов.

3 Методы культивирования микроорганизмов: периодический и непрерывный.

4 Влияние на жизнедеятельность микроорганизмов окислительно-восстановительного потенциала.

5 Влияние температуры на рост и размножение микроорганизмов.

6 Влияние концентрации сухих веществ среды на жизнедеятельность микроорганизмов. Плазмолиз, плазмоптис.

7 Взаимоотношения микроорганизмов: симбиоз, метабиоз, антагонизм.

8 Строение дрожжевой клетки.

9 Химический состав дрожжевой клетки.

10 Химический состав и строение биомембран по современным представлениям.

11 Функции биомембран.

12 Транспорт веществ в клетку, виды транспорта.

13 Способы переноса веществ через мембрану (юнипорт, симпорт, антипорт).

14 Производственная инфекция, ее источники. Способы дезинфекции.

15 Основные свойства ферментов как катализаторов и белковых веществ.

16 Классификация ферментов по типу катализируемых реакций.

17 Регулирование активности ферментов: конкурентные, неконкурентные ингибиторы, аллостерические регуляторы.

18 Каталитическая активность ферментов. Стандартная единица активности фермента, удельная активность.

19 Влияние температуры и рН на активность ферментов.

20 Влияние концентрации субстрата и фермента на скорость ферментативной реакции.

21 Действие гидролитических ферментов: ферментативный гидролиз крахмала, гидролиз некрахмальных полисахаридов, гидролиз белков.

22 Ферменты зерновых культур и микроорганизмов.

23 Ферментные препараты и их номенклатура.

24 Применение ферментных препаратов в производстве пива, спирта, в виноделии.

25 Метаболизм дрожжевой клетки.

26 Оптимальные условия жизнедеятельности дрожжей.

27 Схема спиртового брожения.

28 Вторичные и побочные продукты спиртового брожения.

29 Дрожжи верхового и низового брожения, их характеристика.

30 Расы дрожжей, применяемые в производстве спирта, пива, вина, хлебопекарных дрожжей и требования к ним.

31 Классификация сырья в бродильных производствах.

32 Экономические и технологические требования, предъявляемые к сырью в бродильных производствах.

33 Виды сырья, применяемые в производстве пива, спирта, вина, хлебопекарных дрожжей.

34 Виды зерновых культур.

35 Строение зерна (на примере ячменя).

36 Химический состав зерновых культур.

37 Физические свойства зерновой массы.

38 Биохимические процессы, идущие в зерне при хранении: послеуборочное дозревание, дыхание, самосогревание.

39 Способы хранения зерна.

40 Режимы хранения зерна.

41 Вредители зерна, борьба с ними.

42 Х мель, виноград, картофель: химический состав и хранение.

43 Химический состав мелассы и условия хранения.

44 Характеристика природных вод. Примеси воды.

45 Использование воды в производстве. Общие требования к воде.

46 Жесткость воды: временная, постоянная, общая. Единицы измерения.

47 Щелочность воды.

48 Окисляемость воды. Содержание сухого остатка.

49 Биологические показатели воды.

50 Технологическое назначение воды. Требования к воде в производстве пива, спирта, солода, хлебопекарных дрожжей.

51 Требования к воде в производстве ликероводочных и безалкогольных напитков.

52 Подготовка воды в бродильных производствах. Коагуляция коллоидов, дезодорация воды, обезжелезивание.

53 Способы умягчения воды.

54 Способы обеззараживания воды.

55 Сточные воды бродильных производств, их характеристика. ХПК, БПК.

56 Очистка сточных вод бродильных производств.

БИБЛИОГРАФИЧЕСКИИЙ СПИСОК

1 Болдырев в биохимию мембран.__ М.: Высшая школа, 1986.__ 112 с.

2 Вода и сточные воды в пищевой промышленности .– М.: Пищевая промышленность, 1972. – 384 с.

3 Грачева ферментных препаратов. – М.: Агропромиздат, 1987. – 335 с.

4 Достижения в технологии солода и пива/ Под ред. КолпакчиА. И. __ М.: Пищевая промышленность, Прага: СНТЛ-Издат. технической литературы , 1980. __ 351 с.

5 , Бакушинская микробиологии, санитарии и гигиены в пищевой промышленности.– М.: Пищевая промышленность, 1977. – 501 с

6 , Фараджева: их роль в технологии пищевых продуктов. __ Воронеж: Изд. ВГУ, 1999. __ 118 с.

7 Лхотский А. Ферменты в пивоварении. __ М.: Пищевая промышленность, 1975. __ 318 с.

8 Мальцев бродильных производств.– М.: Легкая и пищевая промышленность, 1980.– 560 с.

9 Методы исследования качества сырья, полупродуктов и готовой продукции бродильных производств. Ч.1. «Анализ сырья бродильных производств» Лабораторный практикум. , Пермякова ТИПП. __ Кемерово, 2001. – 67 с.

10 , Шишацкий хлебопекарных дрожжей. Справочник. __ М.: Агропромиздат, 1990. – 335 с.

11 Справочник по производству спирта. Сырье, технология и технохимконтроль/ , и др. __ М.: Легкая и пищевая промышленность, 1981.– 336 с.

12 , Федоров технология бродильных производств. __ М.: Колос, 2002. __ 408 с.

13 Ферментные препараты в пищевой промышленности. /Под ред. и. – М.: Пищевая промышленность, 1975. – 535 с.

14 Хмель и хмелевые препараты в пище-вой промышленности /, и др. – М.: Легкая и пищевая промышленность, 1982. – 168 с.

15 , Пономарев переработки винограда. – М.: Агропромиздат, 1990. – 447 с.


Top