Взрывчатые вещества, их классификация и свойства. Весьма большая чувствительность и слабые взрывчатые характеристики не позволяют использовать их в качестве основных ВВ для получения от них механической работы

Подводные взрывные работы.

Учебные вопросы:

1.Основные понятия о взрывах и взрывчатых веществах.

2. Подводные взрывы. Характеристики ВВ, используемые при проведении подводных

взрывных работ.

3. Способы взрывания и средства инициирования промышленных ВВ.

Основные виды подводных взрывных работ и особенности их проведения.

1. Подводные взрывные работы;

Подводные земляные работы;

Строительство подводных инженерных сооружений;

Ремонт подводных сооружений;

Укладка и ремонт подводных кабелей;

Прокладка и ремонт подводных трубопроводов;

Подводная резка и сварка металлов;

Литература:

1. К.А.Забела, Ю.Г.Кушнирюк. Пособие по подводно-техническим работам в строительстве/ К. Будивельник. – 1975 г. – стр. 26-25.

Основные понятия о взрывах и взрывчатых веществах.

Взрыв - это процесс очень быстрого превращения взрывчатого вещества в большое количество сильно сжатых и нагретых газов, которые, расширяясь, производят механическую работу (разрушение, перемещение, дробление, выбрасывание).

Взрывчатое вещество (ВВ) - химические соединения или смеси таких соединений, которые под воздействием определенных внешних воздействий способны к быстрому, саморазвивающемуся химическому превращению в большое количество газов.

По химическому процессу взрыв представляет горение ВВ, но отличается от простого горения быстротой процесса, происходящего в тысячные и десятитысячные доли секунды. Отсюда, по скорости превращения взрыв делят на два типа - горение и детонация.

При горении передача энергии от одного слоя вещества к другому происходит путем теплопроводности. Взрыв типа горения характерен для пороха. Процесс образования газов происходит достаточно медленно. Благодаря этому, при взрыве пороха в замкнутом пространстве (гильзе патрона, снаряда) происходит выбрасывание пули, снаряда из ствола, но не происходит разрушения гильзы, патронника оружия.

При детонации процесс передачи энергии обуславливается прохождением ударной волны по ВВ со сверхзвуковой скоростью (6-7 тыс. м. в секунду). В этом случае газы образуются очень быстро, давление возрастает мгновенно до очень больших величин. Проще говоря, у газов нет времени уходить по пути наименьшего сопротивления и они в стремлении расшириться, разрушают все на своем пути. Этот тип взрыва характерен для тротила, гексогена, аммонита и т.п. веществ.

  1. Механическое (удар, накол, трение)
  2. Тепловое (искра, пламя, нагревание)
  3. Химическое (хим. реакция взаимодействия какого-либо вещества с ВВ)
  4. Детонационное (взрыв рядом с ВВ другого ВВ)

В зависимости от типа взрыва и чувствительности к внешним воздействиям все ВВ делят на три основные группы:


  1. Инициирующие ВВ.
  2. Метательные ВВ.
  3. Бризантные ВВ.

Инициирующие ВВ. Обладают высокой чувствительностью к внешним воздействиям и их взрыв, (детонация) оказывает детонационное воздействие на бризантные и метательные ВВ, которые обычно к остальным типам внешнего воздействия не чувствительны вовсе или же обладают неудовлетворительной чувствительностью. Поэтому, инициирующие вещества и применяют только для возбуждения взрыва бризантных или метательных ВВ. Для обеспечения безопасности применения инициирующих ВВ, их упаковывают в защитные приспособления (капсюль, капсюльная втулка, капсюль - детонатор, электродетонатор, взрыватель). Типичные представители инициирующих ВВ: гремучая ртуть, азид свинца, тенерес (ТНРС).

Метательные ВВ. Метательными ВВ (порохами) называются такие вещества, основной формой взрывчатого превращения которых является горение. При взрыве пороха дробящее действие проявляется в незначительной степени по сравнению с действием в виде отбрасывания, разбрасывания окружающей среды, поэтому их после появления бризантных ВВ стали называть метательными ВВ. Пороха делятся на дымные и бездымные.

Бризантные ВВ. Бризантные ВВ свое название получили от французского briser, что значит дробить, разламывать. Бризантные ВВ в отличие от инициирующих не детонируют от таких простых начальных импульсов, как искра и луч пламени. Для возбуждения в них детонации необходим начальный импульс в виде взрыва небольшого количества инициирующего ВВ, а иногда и взрыва так называемого промежуточного детонатора из другого, более чувствительного вещества, взрывающегося, в свою очередь, от инициирующего ВВ. Бризантные ВВ - основные вещества, применяющиеся в огромных количествах для снаряжения боеприпасов (артиллерийских снарядов, минометных мин, авиационных бомб, морских и инженерных мин) и для производства взрывных работ как для военных.

Бризантные ВВ подразделяются на:

- ВВ повышенной мощности, обладающие повышенной скоростью детонации (7500 - 8500 м/с) и выделяющие большое количество тепла при взрыве (Тэн , Гексоген , Тетрил , Октоген, Нитроглицерин );

- ВВ нормальной мощности - обладают большой стойкостью, выдерживают длительное хранение и весьма мало чувствительны ко всякого рода внешним воздействиям, что делает обращение с ними практически безопасным (Тротил, Пикриновая кислота, Пластичное ВВ (пластит-4), Динамиты );

- ВВ пониженной мощности - обладают пониженной бризантностью вследствие существенно меньшего тепловыделения и меньшей скорости их детонация (не более 5000 м/с), поэтому они уступают бризантным ВВ нормальной мощности по бризантному действию и равноценны им по работоспособности (Аммиачная селитра, Аммониты, Динамоны, Аммоналы).

Все ВВ характеризуются рядом данных, в зависимости от величин которых решается вопрос о применении данного вещества для решения тех или иных задач. Наиболее существенные из них это:

  1. Чувствительность к внешним воздействиям
  2. Энергия (теплота) взрывчатого превращения
  3. Скорость детонации
  4. Бризантность
  5. Фугасность
  6. Химическая стойкость
  7. Продолжительность и условия работоспособного состояния
  8. Нормальное агрегатное состояние
  9. Плотность

Достаточно полно свойства ВВ можно описать, используя все девять характеристик. Однако для понимания в целом того, что обычно называют мощностью или силой можно ограничиться двумя характеристиками: «Бризантность» и «Фугасность».

Бризантность - это способность ВВ дробить, разрушать соприкасающиеся с ним предметы (металл, горные породы и т.п.). Величина бризантности говорит о том, насколько быстро образуются при взрыве газы. Чем выше бризантность того или иного ВВ, тем более оно годится для снаряжения снарядов, мин, авиабомб. Такое ВВ при взрыве лучше раздробит корпус снаряда, придаст осколкам наибольшую скорость, создаст более сильную ударную волну. С бризантностью напрямую связана характеристика - скорость детонации, т.е. насколько быстро процесс взрыва распространяется по веществу ВВ.

Фугасность - иначе говоря, работоспособность ВВ, способность разрушить и выбросить из области взрыва, окружающие материалы (грунт, бетон, кирпич и т.п.). Эта характеристика определяется количеством, образующихся при взрыве газов. Чем больше образуется газов, тем большую работу способно выполнить данное ВВ.

Для взрывных работ в грунте более походят ВВ, обладающее наибольшей фугасностью прилюбой бризантности. Для снаряжения снарядов в первую очередь ценна высокая бризантность и не столь важна фугасность.

Реальным способом сравнения мощностей различных ВВ является тротиловый эквивалент . Его суть заключается в том, что мощность тротила условно принята за единицу. Все остальные ВВ (в том числе и ядерное ВВ) сравниваются с тротилом. Оценка осуществляется из условия необходимого количества тротила для выполнения такой же взрывной работы, что и данным количеством этого ВВ. Например: 100гр. гексогена дают тот же результат, что и 125 гр. тротила, а 75 гр. тротила заменят 100гр. аммонита.

Работоспособность ВВ определяется условным количеством вещества, которое выбрасывается при взрыве. Определение работоспособности ВВ произведится по методу Трауцля (рис.1).

После взрыва заряда испытуемого ВВ просверленный в цилиндре канал превращается в полость. Эту полость заполняют водой и по ее количеству определяют объем полости. Работоспособность ВВ (Р ) характеризуется уширением полости за счет действия заряда ВВ, выраженным в см 3 .

P = V – (V 1 + V 2), см 3 ,

где V – объем полости после взрыва, см 3 ;

V 1 = 61.5см 3 первоначальный объем канала при диаметре канала 25 мм и глубине 125 мм;

V 2 = 28-30см 3 – уширение полости за счет взрыва капсюля-детонатора.

Определение скорости детонации ВВ. Может быть осуществлено по методу Дотриша (рис. 2).

После взрыва заряда измеряется расстояние m от края пластинки до точки М , в которой на пластинке остается след от встречи волн детонации, распространяющихся по обоим отрезкам детонирующего шнура. Скорость детонации ВВ определяется, исходя из равенства времени прихода детонационной волны в точку М через отрезок шнура L 1 (t 1), а с другой стороны – через заряд ВВ (на расстоянии S)и второй отрезок шнура L 2 (t 2):

поскольку t 1 = t 2 , то

отсюда , м/с.

Определение бризантности ВВ производится по методу Гесса (рис. 3) и характеризуется степенью обжатия свинцового столбика в мм.

Производятся измерения высоты столбика из рафинированного свинца до и после взрыва. Изменение высот столбика после взрыва является относительной характеристикой бризантности взрывчатого вещества.

Взрывчатое вещество (ВВ) - химическое соединение или их смесь, способное в результате определённых внешних воздействий или внутренних процессов взрываться, выделяя тепло и образуя сильно нагретые газы.

Комплекс процессов, который происходит в таком веществе, называется детонацией.

Традиционно к взрывчатым веществам также относят соединения и смеси, которые не детонируют, а горят с определенной скоростью (метательные пороха, пиротехнические составы).

Также существуют методы воздействия на различные вещества, приводящие к взрыву (например, лазером или электрической дугой). Обычно такие вещества не называют «взрывчатыми».

Сложность и разнообразие химии и технологии ВВ, политические и военные противоречия в мире, стремление к засекречиванию любой информации в этой области привели к неустойчивым и разнообразным формулировкам терминов.

Взрывчатое вещество (или смесь) - твердое или жидкое вещество (или смесь веществ), которое само по себе способно к химической реакции с выделением газов при такой температуре и таком давлении и с такой скоростью, что это вызывает повреждение окружающих предметов. Пиротехнические вещества включаются в эту категорию даже в том случае, если они не выделяют газов.

Пиротехническое вещество (или смесь) - вещество или смесь веществ, которые предназначены для производства эффекта в виде тепла, огня, звука или дыма или их комбинации.

Под взрывчатыми веществами понимаются как индивидуальные взрывчатые вещества, так и взрывчатые составы, содержащие одно или несколько индивидуальных взрывчатых веществ, металлические добавки и другие компоненты.

Важнейшими характеристиками взрывчатых веществ являются:

Скорость взрывчатого превращения (скорость детонации или скорость горения),

Давление детонации,

Теплота взрыва,

Состав и объём газовых продуктов взрывчатого превращения,

Максимальная температура продуктов взрыва,

Чувствительность к внешним воздействиям,

Критический диаметр детонации,

Критическая плотность детонации.

При детонации разложение ВВ происходит настолько быстро, что газообразные продукты разложения с температурой в несколько тысяч градусов оказываются сжатыми в объёме, близком к начальному объёму заряда. Резко расширяясь, они являются основным первичным фактором разрушительного действия взрыва.

Различают 2 основных вида действия ВВ:

Бризантное (местного действия),

Фугасное (общего действия).

Бризантность - это способность ВВ дробить, разрушать соприкасающиеся с ним предметы (металл, горные породы и т.п.). Величина бризантности говорит о том, насколько быстро образуются при взрыве газы. Чем выше бризантность того или иного ВВ, тем более оно годится для снаряжения снарядов, мин, авиабомб. Такое ВВ при взрыве лучше раздробит корпус снаряда, придаст осколкам наибольшую скорость, создаст более сильную ударную волну. С бризантностью напрямую связана характеристика - скорость детонации, т.е. насколько быстро процесс взрыва распространяется по веществу ВВ. Измеряется бризантность в миллиметрах.

Фугасность - иначе говоря, работоспособность ВВ, способность разрушить и выбросить из области взрыва, окружающие материалы (грунт, бетон, кирпич и т.п.). Эта характеристика определяется количеством, образующихся при взрыве газов. Чем больше образуется газов, тем большую работу способно выполнить данное ВВ. Измеряется фугасность в кубических сантиметрах.

Отсюда становится достаточно ясно, что для различных целей подходят различные ВВ. Например, для взрывных работ в грунте (в шахте, при устройстве котлованов, разрушении ледяных заторов и т.п.) больше подойдет ВВ, обладающее наибольшей фугасностью, а бризантность подойдет любая. Наоборот, для снаряжения снарядов в первую очередь ценна высокая бризантность и не столь важна фугасность.

ВВ широко используются и в промышленности для производства различных взрывных работ.

Ежегодный расход ВВ в странах с развитым промышленным производством даже в мирное время составляет сотни тысяч тонн.

В военное время расход ВВ резко возрастает. Так, в период 1-й мировой войны в воюющих странах он составил около 5 миллионов тонн, а во 2-й мировой войне превысил 10 миллионов тонн. Ежегодное использование ВВ в США в 1990-х годах составляло около 2 миллионов тонн.

В Российской Федерации запрещена свободная реализация взрывчатых веществ, средств взрывания, порохов, всех видов ракетного топлива, а также специальных материалов и специального оборудования для их производства, нормативной документации на их производство и эксплуатацию.

У ВВ существуют индивидуальные химические соединения.

Большинство таких соединений представляют собой кислородосодержащие вещества, обладающие свойством полностью или частично окисляться внутри молекулы без доступа воздуха.

Существуют соединения, не содержащие кислород, но обладающие свойством взрываться. Они, как правило, обладают повышенной чувствительностью к внешним воздействиям (трению, удару, нагреву, огню, искре, переходу между фазовыми состояниями, другим химическим веществам) и относятся к веществам с повышенной взрывоопасностью.

Существуют взрывчатые смеси, которые состоят из двух и более химически не связанных между собой веществ.

Многие взрывчатые смеси состоят из индивидуальных веществ, не имеющих взрывчатых свойств (горючих, окислителей и регулирующих добавок). Регулирующие добавки применяют для:

Снижения чувствительности ВВ к внешним воздействиям. Для этого добавляют различные вещества - флегматизаторы (парафин, церезин, воск, дифениламин и др.)

Для увеличения теплоты взрыва. Добавляют металлические порошки, например, алюминий, магний, цирконий, бериллий и прочие восстановители.

Для повышения стабильности при хранении и применении.

Для обеспечения необходимого физического состояния.

Взрывчатые вещества классифицируют по физическому состоянию:

Газообразные,

Гелеобразные,

Суспензионные,

Эмульсионные,

Твердые.

В зависимости от типа взрыва и чувствительности к внешним воздействиям все взрывчатые вещества делят на 3 группы:

1.Инициирующие
2.Бризантные
3.Метательные

Инициирующие (первичные)

Инициирующие ВВ предназначаются для возбуждения взрывчатых превращений в зарядах других ВВ. Они отличаются повышенной чувствительностью и легко взрываются от простых начальных импульсов (удара, трения, накола жалом, электрической искры и т. д.).

Бризантные (вторичные)

Бризантные ВВ менее чувствительны к внешним воздействиям, и возбуждение взрывных превращений в них осуществляется главным образом с помощью инициирующих ВВ.

Бризантные ВВ применяют для снаряжения боевых частей ракет различных классов, снарядов реактивной и ствольной артиллерии, артиллерийских и инженерных мин, авиационных бомб, торпед, глубинных бомб, ручных гранат и т. д.

Значительное количество бризантных ВВ расходуется в горном деле (вскрышные работы, добыча полезных ископаемых), в строительстве (подготовка котлованов, разрушение скальных пород, разрушение ликвидируемых строительных конструкций), в промышленности (сварка взрывом, импульсная обработка металлов и др.).

Метательные ВВ (пороха и ракетные топлива) служат источниками энергии для метания тел (снарядов, мин, пуль и т. д.) или движения ракет. Их отличительная особенность - способность к взрывчатому превращению в форме быстрого сгорания, но без детонации.

Пиротехнические составы применяются для получения пиротехнических эффектов (светового, дымового, зажигательного, звукового и т. д.). Основной вид взрывчатых превращений пиротехнических составов - горение.

Метательные ВВ (пороха) применяются в основном в качестве метательных зарядов для различного рода оружия и предназначаются для придания снаряду (торпеде, пуле и т.д.) определенной начальной скорости. Преимущественным видом химического превращения их является быстрое сгорание, вызываемое лучом огня от средств воспламенения.

Так же существует классификация взрывчатых веществ по направлению применения на военные и промышленные для горного дела (добыча полезных ископаемых), для строительства (плотин, каналов, котлованов), для разрушения строительных конструкций, антисоциального применения (терроризм, хулиганство), при этом часто используются низкокачественные вещества и смеси кустарного изготовления.

Виды взрывчатых веществ

Существует огромное количество взрывчатых веществ, такие как, аммиачно-селитренные взрывчатые вещества, пластит, гексоген, мелинит, тротил, динамит, эластит и многие другие взрывчатые вещества.

1. Пластит - очень популярная в средствах массовой пропаганды взрывчатка. Особенно, если требуется подчеркнуть особенное коварство супостата, ужасные возможные последствия несостоявшегося взрыва, явный след спецслужб, особенно сильные страдания мирного населения под разрывами бомб. Как только ее не называют - пластит, пластид, пластиковая взрывчатка, пластичная взрывчатка, пластическая взрывчатка. Одного спичечного коробка пластида достаточно, чтобы в клочья разнести грузовик, пластиковой взрывчатки, лежащей в кейсе достаточно, чтобы разрушить 200-квартирный дом до основания.

Пластит - это бризантное взрывчатое вещество нормальной мощности. Пластит обладает примерно такими же взрывчатыми характеристиками, что и тротил и все его отличие состоит в удобстве применения при производстве взрывных работ. Особенно это удобство заметно при подрывании металлических, железобетонных и бетонных конструкций.

Например, металл очень хорошо противостоит взрыву. Чтобы перебить металлическую балку необходимо обложить ее по сечению взрывчаткой, причем так, чтобы она как можно плотнее прилегала к металлу. Ясно, что сделать это намного быстрее и легче, имея под рукой ВВ подобное пластилину, нежели подобное деревянным чуркам. Пластит же легко разместить так, что он будет плотно прилегать к металлу даже там, где размещению тротила мешают заклепки, болты, уступы и т.п.

Основные характеристики:

1. Чувствительность: Практически не чувствителен к удару, прострелу пулей, огню, искре, трению, химическому воздействию. Надежно взрывается от стандартного капсюля-детонатора, погруженного в массу ВВ на глубину не менее 10мм.

2. Энергия взрывчатого превращения- 910 ккал/кг.

3. Скорость детонации:7000 м/сек.

4. Бризантность: 21мм.

5. Фугасность:280 куб.см.

6. Химическая стойкость:Не вступает в реакцию с твердыми материалами (металл, дерево, пластмассы, бетон, кирпич и т.п.), не растворяется водой, не гигроскопичен, не изменяет своих взрывчатых свойств при длительном нагреве, смачивании водой. Под длительным воздействии солнечного света темнеет и несколько повышает свою чувствительность. При воздействии открытого пламени загорается и горит ярким энергичным пламенем. Горение в замкнутом пространстве большого количества может перерасти в детонацию.

7. Продолжительность и условия работоспособного состояния. Продолжительность не ограничивается. Длительное (20-30 лет) пребывание в воде, земле, корпусах боеприпасов не изменяет взрывчатых свойств.

8. Нормальное агрегатное состояние:Пластичное глинообразное вещество. При отрицательных температурах значительно снижает пластичность. При температурах ниже -20 градусов затвердевает. С ростом температуры пластичность возрастает. При +30 градусах и выше теряет механическую прочность. При +210 градусах загорается.

9. Плотность:1.44 г./куб см.

Пластит представляет собой смесь гексогена и пластифицирующих веществ (церезин, парафин и др.).

Внешний вид и консистенция сильно зависит от применяемых пластификаторов. Может иметь консистенцию от пасты до плотной глины.

Пластит поступает в войска в виде брикетов массой 1 кг обернутых коричневой парафинированной бумагой.

Некоторые типы пластита могут упаковываться в тубы или выпускаться в виде лент. Такие пластиты имеют консистенцию резины. Отдельные типы пластита имеют клеящие добавки. Такое ВВ обладает способностью прилипать к поверхностям.

2. Гексоген - взрывчатое вещество, относящееся к группе ВВ повышенной мощности. Плотность 1.8 г/куб.см., температура плавления 202 градуса, температура вспышки 215-230 градусов, чувствительность к удару 10 кг. груза 25см., энергия взрывчатого превращения 1290 ккал/кг, скорость детонации 8380 м/сек., бризантность 24мм., фугасность 490 куб.см

Нормальное агрегатное состояние - мелкокристаллическое вещество белого цвета без вкуса и запаха. В воде не растворяется, негигроскопичен, неагрессивен. С металлами в химическую реакцию не вступает. Прессуется плохо. От удара, прострела пулей взрывается. Загорается охотно и горит белым ярким шипящим пламенем. Горение переходит в детонацию (взрыв).

В чистом виде применяется только для снаряжения отдельных образцов капсюлей-детонаторов. Для подрывных работ в чистом виде не используется. Используется для промышленного изготовления взрывчатых смесей. Обычно эти смеси применяются для снаряжения некоторых видов боеприпасов. Например, морских мин. С этой целью чистый гексоген смешивают с парафином, окрашивают суданом в оранжевый цвет и прессуют до плотности 1.66 г./куб.см. В смеси добавляют аллюминевую пудру. Все эти работы проводятся в промышленных условиях на специальном оборудовании

Название "гексоген" стало популярным в средствах массовой пропаганды после памятных диверсионных актов в Москве и Волгодонске, когда подряд было взорвано несколько домов.

Гексоген в чистом виде применяется крайне редко, применение его в этом виде весьма опасно для самих взрывников, производство требует хорошо налаженного промышленного процесса.

3. Тротил – взрывчатое вещество нормальной мощности.

Основные характеристики:

1. Чувствительность: Не чувствителен к удару, прострелу пулей, огню, искре, трению, химическому воздействию. Прессованный и порошкообразный тротил хорошо чувствителен к детонации и надежно взрывается от стандартных капсюлей-детонаторов, запалов.

2. Энергия взрывчатого превращения - 1010 ккал/кг.

3. Скорость детонации:6900 м/сек.

4. Бризантность:19мм.

5. Фугасность:285 куб.см.

6. Химическая стойкость:Не вступает в реакцию с твердыми материалами (металл, дерево, пластмассы, бетон, кирпич и т.п.), не растворяется водой, не гигроскопичен, не изменяет своих взрывчатых свойств при длительном нагреве, смачивании водой, и изменении агрегатного состояния (в расплавленном виде). Под длительном воздействии солнечного света темнеет и несколько повышает свою чувствительность. При воздействии открытого пламени загорается и горит желтым, сильно коптящим пламенем.

7. Продолжительность и условия работоспособного состояния:Продолжительность не ограничивается (надежно срабатывает тротил, изготовленный в начале тридцатых годов). Длительное (60-70 лет) пребывание в воде, земле, корпусах боеприпасов не изменяет взрывчатых свойств.

8. Нормальное агрегатное состояние:Твердое вещество. Применяется в порошкообразном, чешуированом и твердом виде.

9. Плотность:1.66 г./куб см.

В обычных условиях тротил представляет собой твердое вещество. Плавится при температуре +81 градус, при температуре +310 градусов загорается.

Тротил является продуктом воздействия смеси азотной и серной кислот на толуол. На выходе получается чешуированный тротил (отдельные мелкие чешуйки). Из чешуированного тротила механической обработкой можно получить порошкообразный, прессованный тротил, нагреванием плавленый тротил.

Тротил нашел самое широкое применение из-за простоты и удобства его механической обработки (очень легко изготавливать заряды любого веса, заполнять любые полости, резать, сверлить и т.п.), высокой химической стойкости и инертности, невосприимчивости к внешним воздействиям. А значит, он очень надежен и безопасен в применении. В то же время он обладает высокими взрывными характеристиками.

Тротил применяется как в чистом виде, так и в смесях с другими ВВ, причем в химические реакции тротил с ними не вступает. В смеси с гексогеном, тетрилом, тэном тротил понижает чувствительность последних, а в смеси с аммиачно-селитренными ВВ тротил повышает их взрывчатые свойства, повышает химическую стойкость и снижает гигроскопичность.

Тротил в России является основным ВВ для снаряжения снарядов, ракет, минометных мин, авиабомб, инженерных мин и фугасов. Тротил применяется как основное ВВ при проведении подрывных работ в грунте, подрывании металлических, бетонных, кирпичных и иных конструкций.

В России для подрывных работ тротил поставляется:

1.В чешуированном виде в бумажных мешках из крафт-бумаги весом 50кг.

2.В прессованном виде в деревянных ящиках (шашки 75, 200, 400г.)

Тротиловые шашки выпускаются трех типоразмеров:

Большая - размером 10х5х5 см. и массой 400г.

Малая - размером 10х5х2.5 см. и массой 200г.

Буровая - диаметром 3 см., длиной 7см. и массой 75г.

Все шашки обернуты парафинированной бумагой красного, желтого, серого или серо-зеленого цвета. На боковой стороне имеется надпись "Тротиловая шашка".

Из больших и малых тротиловых шашек составляются подрывные заряды нужной массы. Ящик с тротиловыми шашками может также использоваться как подрывной заряд массой 25 кг. Для этого в верхней крышке в центре имеется отверстие для запала, закрытое легко удаляемой дощечкой. Шашка под этим отверстием уложена так, чтобы ее запальное гнездо приходилось как раз под отверстием в крышке ящика. Ящики окрашены в зеленый цвет, снабжены деревянными или веревочными ручками для переноски. На ящиках нанесена соответствующая маркировка.

Диаметр буровой шашки соответствует диаметру стандартного бура для сверления горных пород. Эти шашки используются для комплектования буровых зарядов при разрушении горных пород.

В инженерные войска тротил также поставляется в виде готовых зарядов в металлической оболочке, имеющей гнезда для различного типа запалов и взрывателей, и приспособления для быстрого закрепления заряда на разрушаемом объекте.

Взрывчатка – самодельное взрывное устройство.

Пожалуй, нет сейчас в мире ни одного государства, которое не сталкивалось бы с проблемой использования самодельных взрывных устройств. Что ж, самодельные взрывные устройства (в свое время их метко называли адскими машинками) давно уже стали излюбленным орудием и террористов международного масштаба, и полусумасшедших юнцов, воображающих, что они борются за светлое будущее всего прогрессивного человечества. И немало ни в чем не повинных людей было убито или ранено в результате террористических актов.

Взрывчатка - это химия. Разные компоненты взрывчатых веществ добываются разными химическими реакциями и обладают разной взрывной силой и разными стимулами для воспламенения, такими, например, как нагревание, удар или трение. Конечно, можно выстроить возрастающий рейтинг взрывчатых веществ по весу заряда. Но следует знать, что простое удвоение веса еще не означает удвоения взрывного эффекта.

Химическая взрывчатка бывает двух категорий - пониженной и повышенной мощности (речь идет о скорости воспламенения).

Самые распространенные взрывчатые вещества пониженной мощности - это черный порох (открыт в 1250г), оружейный хлопок и нитрохлопок. Изначально они использовались в артиллерии, для заряжения мушкетов и тому подобного, так как в этом качестве они лучше всего раскрывают свои характеристики. При воспламенении в замкнутом пространстве они выделяют газы, создающие давление, которое собственно и вызывает взрывной эффект.

Взрывчатые вещества повышенной мощности отличаются от взрывчатых веществ пониженной мощности весьма существенно. Первые с самого начала использовались как детонирующие, потому что при детонации распадались, создавая сверхзвуковые волны, которые, проходя через вещество, разрушали его молекулярную структуру и выделяли супергорячие газы. В результате, происходил взрыв несоизмеримо более сильный, чем при использовании взрывчатки пониженной мощности. Еще одним отличительным свойством взрывчатых веществ этого типа является безопасность в обращении - чтобы привести их к взрыву, требуется мощный детонатор.

Но, чтобы в цепи произошел взрыв, необходимо сначала зажечь огонь. Вы ведь не можете сразу заставить гореть кусочек угля. Вам необходима цепь, состоящая из простого листа бумаги, чтобы сначала развести костер, куда потом нужно положить дрова, которые, в свою очередь, и смогу зажечь уголь.

Такая же цепь необходима и для детонации взрывчатых веществ повышенной мощности. Инициатором будет взрывной патрон или детонатор, состоящий из небольшого количества инициирующего вещества. Иногда детонаторы делают двусоставными - с более чувствительным взрывным веществом и катализатором. Частички взрывчатки, используемой в детонаторах, обычно по размеру не превышают горошину. Детонаторы бывают двух типов - вспышечные и электрические. Вспышечные детонаторы действуют в результате химического (детонатор состоит из химических веществ, воспламеняющихся после детонации) или механического (боек, как в ручной гранате или пистолете, бьет по капсюлю, а затем происходит взрыв) воздействия.

Электрический взрыватель соединен с взрывчаткой электрическими проводами. Электрический разряд нагревает соединительные провода, и детонатор, естественно, срабатывает. Террористы, в основном, используют для своих взрывных устройств электрические детонаторы, а военные предпочитают вспышечные детонаторы.

Встречаются простые, последовательные и параллельные электрические цепи террористических взрывных устройств. Простые цепи состоят из заряда взрывчатки, электрического детонатора (чаще всего - из двух, так как террористы обычно подстраховываются из опасения, что один детонатор может не сработать), батареи или другого источника электроэнергии и выключателя, который предотвращает срабатывание устройства.

Кстати, террористы часто гибнут, замыкая цепи взрывных устройств драгоценностями (например, своими кольцами, часами или чем-нибудь в этом роде), и последовательно ставя в цепь второй выключатель в качестве предохранителя. Если велика вероятность того, что бомба может быть обезврежена на улице, террористы вполне могут добавить еще параллельный выключатель. Впрочем, электрические переключатели, которые используются в цепях террористических бомб, имеют бесконечное количество вариаций и различий. Ведь, в конечном итоге, они зависят от фантазии и технических возможностей мастера. А также от поставленной цели. А это значит, что проверять и детально изучать все варианты просто нет смысла.

Характеристика.

АСП являются одним из основных специфических элементов боевых ударных комплексов. Разрушающее действие СП обусловлено энергией, выделяемой при быстром химической превращении группы веществ, называемой взрывчатыми веществами (ВВ).

Химическим превращением В.В., протекающим в чрезвычайно короткий промежуток времени, принято называть взрывным, а сам процесс - взрывом . Это явление, состоящее в чрезвычайно быстром изменении вещества, сопровождается переходом его потенциальной энергии в механическую работу.

Характерным признаком взрыва является резкий скачок давления в среде, окружающей место взрыва. Этот скачок давления служит непосредственной причиной разрушительного действия взрыва, который обуславливается быстрым расширением сжатых газов или газов, существовавших либо до взрыва, либо образовавшихся при взрыве. Скорость взрыва превращения достигает 5300-7200м/сек.

В зависимости от скорости распространения взрывной реакции, различают три вида взрывных процессов:

ДЕТОНАЦИЯ – взрыв, распространяющийся с постоянной максимальной возможной для данного В.В. и данных условий скоростью. Скорость детонации составляет 5300м/сек.

ГОРЕНИЕ – скорость протекания взрывного процесса характеризуется более или менее быстрым нарастанием давления и способностью газообразных продуктов горения производить работу. Причем скорость горения существенно зависит от внешних условий. С ростом давления и температуры скорость может значительно возрастать и после этого собственно – взрыв. Скорость горения составляет от долей до десятков м/сек.

ВЗРЫВ – скорость протекания взрывного процесса переменная и характеризуется резким скачком давления в месте взрыва и ударом газов, вызывающих дробление и сильные деформации предметов на относительно небольших расстояниях.

Процесс взрыва существенно отличается от горения по характеру передачи от одного к другому. При горении энергия от реагирующего слоя к соседнему невозбужденному слою В.В. передается путем теплопроводности, теплоизлучения и конвективного теплообмена, а при взрыве – путем сжатия вещества ударной волной.

Основные свойства В.В.:

· Стойкость ─ способность сохранять под действием внешней среды физические и химические свойства.

· Работоспособность ─ механическая работа, которую производят сильно нагретые газы.

· Бризантность ─ способность дробить при взрыве соприкасающуюся со В.В. среду (оболочку авиабомбы и так далее).

· Чувствительность ─ способность к взрывчатому превращению под влиянием внешних воздействий, т.е. подачей начального импульса.

В качестве начального импульса используются следующие виды энергии:

Механическая (удар, трение);

Тепловая (нагрев);

Электрическая (искра);

Детонация (взрыв небольшого заряда).

Требования предъявляемые к В.В.:

1. Достаточная мощность;

2. Определенные пределы чувствительности;

3. Достаточная стойкость;

4. Требования экономического характера (простота технологии).

КЛАССИФИКАЦИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ ПО НАЗНАЧЕНИЮ И ИХ КРАТКАЯ ХАРАКТЕРИСТИКА.

Метательные В.В.

Для них характерно быстрое горение (до 10м/с). Представителями этих веществ являются: ─ ПОРОХА - механические смеси (черный или дымный ружейный);

─ коллоидные или бездымные пороха.

Черный порох: калиевая селитра 75%, древесный уголь 15% и сера 10%. Чувствителен к удару, нагреву (tвоспл.=315°С) Vгор = 1-3м/с.

Коллоидные пороха - на основе нитроглицерина. Они менее гигроскопичны по сравнению с черным порохом и более чувствительны к механическому и тепловому импульсу tвоспл.=170-180°С.

Область применения:

· в замедлительных запрессовках;

· в воспламенительных зарядах;

· в вышибных зарядах;

· для снаряжения патронов стрелково-пушечного вооружения.

Бризантные В.В.

Применяются в качестве основного снаряжения авиабомб. Для их возбуждения применяются специальные средства инициирования в виде капсюлей-детонаторов. Наиболее широкое применение получили:

ТРОТИЛ ─ кристаллическое вещество желтого цвета, мало гигроскопичен. В обычных условиях хранения химически стоек. С металлами не взаимодействует. Мало чувствителен к трению и не чувствителен к прострелу пулей. При t больше 150°C начинает разлагаться, трудно воспламеняется и в малых количествах спокойно горит. Взрывается при t = 300°С.

ТЕТРИЛ ─ кристаллическое вещество светло-желтого цвета. Не подвержен воздействию света. Окисляет большинство металлов при длительном контакте с ними. Чувствителен к удару и трению. При простреле пулей взрывается. Легко воспламеняется. При t больше 75°С начинает разлагаться, а при t больше 180°С взрывается. Применяется в составе дополнительных детонаторов и передаточных зарядов.

ГЕКСОГЕН ─ мелкокристаллическое вещество белого цвета. Не подвержен воздействию света и влаги, с металлами не взаимодействует. Чувствителен к удару и трению. Взрывается при простреле пулей. Начинает разлагаться при t=200°С. Легко воспламеняется. В чистом виде используется в дополнительных детонаторах и передаточных зарядах.

Инициирующие В.В.

Применяются для снаряжения средств инициирования (капсюлей - детонаторов).

Гремучая ртуть - кристаллическое вещество белого и серого цвета. При увлажнении теряет взрывчатые свойства и вступает в реакцию с некоторыми металлами (медь, алюминий). Очень высокая чувствительность к механическому воздействию, но недостаточная воспламеняющая способность. В авиационных взрывателях используется в ударных составах капсюлей. В чистом виде не применяется.

АЗИД СВИНЦА - мелкокристаллическое вещество белого цвета. Во влажном состоянии не теряет своих взрывчатых свойств, вступает в реакцию с медью. Имеет меньшую чем у гремучей ртути чувствительность к внешним воздействиям при более высокой (в 5-10 раз) инициирующей способности.

ТНРС - мелкокристаллическое вещество темно желтого цвета. С металлами не реагирует. Большая чувствительность к тепловому импульсу, чем у других инициирующих В.В. Очень высокая чувствительность к электрическим разрядам. Применяется в капсюлях-детонаторах, электровоспламенителях.

Пиротехнические составы.

Основной вид взрывчатого превращения - реакция горения, создающая пиротехнический эффект (осветительный, сигнальный, зажигательный).

Зажигательные составы - для снаряжения зажигательных авиабомб (ЗАБ) и зажигательных баков (ЗБ). ЗС - создаются на основе металлов (термиты), либо нефтепродуктов.

ТЕРМИТ - механическая смесь 75% окисла железа и 25% алюминиевого порошка tгор=3000°С, tвоспл=1100°С. Для воспламенения применяется ступенчатое зажигание с помощью переходных пиротехнических воспламенителей.

ВМС-2 - зажигательная вязкая жидкость. Состав: органическое стекло, натриевая селитра, магниевый порошок и другое tгор=1000°С (для ЗБ).

ФОТОСМЕСИ - для снаряжения ФОТАБ.

Состав: алюминиевая пудра, магниевый порошок, веретенное масло.


Похожая информация.




Глава 2

Общие сведения о взрывчатых веществах и

термохимия взрывных процессов

В хозяйственной деятельности людей мы часто встречаемся с взрывными явлениями (взрывами).

В широком смысле слова «взрывом» называется процесс весьма быстрого физического и химического превращения системы, сопровождающийся переходом ее потенциальной энергии в механическую работу.

К примерам взрыва можно отнести:


  • взрыв сосуда, работающего под высоким давлением (паровой котел, химический сосуд, топливный бак);

  • взрыв проводника при коротком замыкании им мощного источника электроэнергии;

  • соударение тел, движущихся с большими скоростями;

  • искровой разряд (молния при грозе);

  • извержение вулкана;

  • ядерный взрыв;

  • взрыв различных веществ (газов, жидкостей, твердых веществ).
В приведенных примерах весьма быстрым превращениям подвергаются различные системы: перегретая вода (или другая жидкость), металлический проводник, токопроводящий слой воздуха, расплавленная масса недр земли, заряд радиоактивных веществ, химические вещества. Все эти системы к моменту взрыва имели определенный запас энергии различного вида: тепловой, электрической, химической, ядерной, кинетической (соударение движущихся тел). Выделение энергии или ее преобразование из одного вида в другой приводит к весьма быстрым изменениям состояния системы, в результате чего она совершает работу.

Мы будем изучать взрывы особых веществ, которые широко применяются в народно-хозяйственной деятельности. Точнее сказать, «взрыв» в процессе изучения мы будем рассматривать как основное свойство изучаемых нами веществ – промышленных взрывчатых веществ.

Применительно к ВВ (в частности к ПВВ) под взрывом следует понимать процесс чрезвычайно быстрого (мгновенного) химического превращения вещества, в результате которого его химическая энергия переходит в энергию сильно сжатых и нагревных газов, совершающих работу при своем расширении.

Приведенное определение дает три характерные особенности «взрыва»:


  • большая скорость химического превращения;

  • образование газообразных продуктов химического разложения вещества – сильно сжатых и нагретых газов, играющих роль «рабочего тела»;

  • экзотермичность реакции.
Все три перечисленные особенности играют роль главных факторов и являются обязательными условиями взрыва. Отсутствие хотя бы одного из них приводит к обычным химическим реакциям, в результате которых превращение веществ не носит характера взрывного процесса.

Рассмотрим факторы, определяющие взрыв более подробно.

Экзотермичность реакции является важнейшим условием взрыва. Это объясняется тем, что взрыв ПВВ возбуждается под действием внешнего источника, имеющего незначительный запас энергии. Этой энергии достаточно лишь для того, чтобы вызвать реакцию взрывчатого превращения небольшой массы ВВ, находящейся в точке, на линии или плоскости инициирования. В дальнейшем процесс взрыва распространяется по массе ВВ самопроизвольно от слоя к слою (послойно) и поддерживается за счет энергии, выделяющейся в предыдущем слое. Количество выделяющегося тепла, в конечном счете, определяет не только возможность самораспространения процесса взрыва, но и его полезное действие, то есть работоспособность продуктов взрыва, так как начальная энергия рабочего тела (газов) полностью определяется тепловым эффектом химической реакции «взрыва».

Большая скорость распространения реакции взрывчатого превращения является его характерной особенностью. Процесс взрыва некоторых ВВ происходит настолько быстро, что создается впечатление, что реакция разложения происходит мгновенно. Однако это не так. Скорость распространения взрыва ВВ хотя и является большой, но имеет конечное значение (максимальная скорость распространения взрыва ПВВ не превышает 9000 м/с).

Наличие сильно сжатых и нагретых до высокой температуры газообразных продуктов также является одним из основных условий взрыва. Резко расширяясь, сжатые газы производят удар по окружающей среде, возбуждая в ней ударную волну, которая совершает запланированную работу. Таким образом, скачок (перепад) давлений на границе раздела взрывчатого вещества и окружающей среды, возникающий в начальный момент, является весьма характерным признаком взрыва. Если при реакции химического превращения газообразные продукты не образуются (т.е нет рабочего тела), процесс реакции не является взрывным, хотя продукты реакции могут иметь высокую температуру, не обладая другими свойствами, они не могут создать скачка давлений и, следовательно, не могут совершить работу.

Обязательность наличия всех трех рассмотренных факторов в явлении взрыва проиллюстрируем на некоторых примерах.

Пример 1 Горение угля:

С + О 2 = СО 2 + 420 (кДж).

При горении выделяется тепло (наличие экзотермичности) и образуются газы (есть рабочее тело). Однако реакция горения идет медленно. Поэтому процесс не является взрывчатым (нет большей скорости химического превращения).

Пример 2 Горение термита:

2 Al + Fe 2 O 3 = Al 2 O 3 + 2 Fe +830 (кДж).

Реакция протекает весьма интенсивно и сопровождается большим количеством выделившегося тепла (энергии). Однако, образовавшиеся продукты реакции (шлаки) не являются газообразными продуктами, хотя и имеют большую температуру (около 3000 о С). Реакция не является взрывом (нет рабочего тела).

Пример 3 Взрывчатое превращение тротила:

С 6 Н 2 (NO 2) 3 СН 3 =2СО+1,2СО 2 +3,8С+0,6Н 2 +1,6Н 2 О+

1,4N 2 +0,2 NH 3 +905 (кДж).

Пример 4 Взрывчатое разложение нитроглицерина:

С 3 Н 5 (NO 3) 3 = 3СО 2 +5 Н 2 О + 1,5N 2 + Q (кДж).

Эти реакции протекают весьма быстро, выделяется теплота (реакции экзотермичны), газообразные продукты взрыва, расширяясь, совершают работу. Реакции носит взрывной характер.

Необходимо иметь в виду, что приведенные основные факторы, определяющие взрыв, следует рассматривать не изолированно, а в тесной взаимосвязи как между собой и с условиями протекания процесса. В одних условиях реакция химического разложения может протекать спокойно, в других – носить взрывной характер. В качестве примера можно привести реакцию горения метана:

СН 4 + 2О 2 = СО 2 + 2Н 2 О + 892 (кДж).

Если горение метана происходит небольшими порциями и его взаимодействие с кислородом воздуха осуществляется по фиксированной контактной поверхности, реакция носит характер устойчивого горения (есть экзотермичность, есть газообразование, нет большой скорости процесса – нет взрыва). Если же метан предварительно смешать с кислородом в значительном объеме и возбудить горение, скорость реакции значительно увеличится и процесс может стать взрывным.

Следует заметить, что большая скорость и экзотермичность процесса создает впечатление о том, что ВВ обладают чрезвычайно большим запасом энергии. Однако, это не так. Как следует из данных, приведенных в таблице 2.1, по теплосодержанию (количество тепла, выделившееся при взрыве 1 кг вещества) некоторые горючие вещества намного превосходят ВВ.

Таблица 2.1- Теплосодержание некоторых веществ

Отличие процесса взрыва от обычных химических реакций заключается в большей объемной концентрации выделяющейся энергии. У некоторых ВВ процесс взрыва происходит настолько быстро, что вся выделившаяся энергия в первый момент сконцентрирована практически в начальном объеме, занимаемом ВВ. Достичь такой концентрации энергии при реакциях другого рода, например, от сжигания бензина в автомобильных двигателях, невозможно.

Создаваемые при взрыве большие объемные концентрации энергии приводят к образованию удельных потоков энергии (удельным потоком энергии называется количество энергии, передаваемое через единицу площади в единицу времени, размерность в Вт /м 2) большой интенсивности, что и предопределяет большую разрушающую способность взрыва.

2.1. Классификация взрывных процессов

На характер протекания взрывного процесса и его конечный результат определяющее влияние оказывают следующие факторы:


  • природа ВВ, т.е его физико-химические свойства;

  • условия возбуждения химической реакции;

  • условия, при которых реакция происходит.
Совместное влияние этих факторов предопределяет не только скорость распространения реакции по массе ВВ, но и сам механизм химической реакции разложения в каждом реагирующем слое. Если, например, поджечь кусочек тротила, то на открытом воздухе он будет медленно гореть «коптящим» пламенем, при этом скорость горения не превосходит нескольких долей сантиметра в секунду. Выделяющаяся энергия будет расходоваться на нагревание воздуха и других тел, находящихся рядом. Если реакцию разложения такого куска тротила возбудить действием капсюля-детонатора, то взрыв произойдет в течение нескольких десятков микросекунд, при этом продукты взрыва проведут резкий удар по воздуху и окружающим телам, возбуждая в них ударную волну и произведя работу. Энергия, выделяющаяся при взрыве, будет расходоваться на совершение работы формоизменения, разрушения и отбрасывания окружающей среды (камень, руда и т.д.).

Общим в обоих рассмотренных примерах является то, что химическое разложение по массе (объему) тротила происходит последовательно от одного слоя к другому. Однако, скорость распространения реагирующего слоя и сам механизм разложения частиц тротила в реагирующем слое в каждом случае будут совершенно различными. Характер протекания процессов, происходящих в реагирующем слое ВВ, определяет, в конечном счете, и скорость распространения реакции. Однако, справедливо и обратное утверждение: по скорости распространения химической реакции можно судить и о ее механизме. Это обстоятельство и позволило положить скорость реакции взрывчатого превращения в основу классификации взрывных процессов. По величине скорости распространения реакции и ее зависимости от условий взрывные процессы подразделяются на следующие основные виды: горение, взрыв (собственно взрыв) и детонацию .

Процессы горения протекают сравнительно медленно (от 10 -3 до 10 м/с), при этом скорость горения существенно зависит от внешнего давления. Чем больше давление в окружающей среде, тем больше скорость горения. На открытом воздухе горение протекает спокойно. В ограниченном объеме процесс горения ускоряется и становится более энергичным, что приводит к быстрому нарастанию давления газообразных продуктов. В таком случае газообразные продукты горения приобретают способность производить работу метания. Горение является характерным видом взрывчатого превращения порохов и ракетных топлив.

Собственно взрыв по сравнению с горением представляет собой качественно иную форму распространения процесса. Отличительными чертами взрыва являются: резкий скачок давления в месте взрыва, переменная скорость распространения процесса, измеряемая тысячами метрами в секунду и сравнительно мало зависящая от внешних условий. Характер действия взрыва – резкий удар газов по окружающей среде, вызывающий дробление и сильные деформации предметов, находящихся вблизи места взрыва. Процесс взрыва существенно отличается от горения по характеру своего распространения. Если при горении энергия от реагирующего слоя к соседнему невозбужденному слою ВВ передается путем теплопроводности, диффузии и излучения, то при взрыве энергия передается путем сжатия вещества ударной волной.

Детонация представляет собой стационарную форму процесса взрыва. Скорость детонации в процессе взрыва, происходящего в заданных условиях, не изменяется и является важнейшей константой данного ВВ. В условиях детонации достигается максимальное «разрушающее» действие взрыва. Механизм возбуждения реакции взрывчатого превращения при детонации такой же, как и при собственно взрыве, то есть передача энергии от слоя к слою осуществляется в виде ударной волны.

Взрыв занимает промежуточное положение между горением и детонацией. Хотя механизм передачи энергии при взрыве такой же, как и при детонации, все же пренебречь процессами передачи энергии в виде теплопроводности, излучения, диффузии, конвенции нельзя. Вот почему взрыв иногда рассматривают как нестационарный, объединяющий совокупность эффектов горения, детонации, расширения газообразных продуктов и других физических процессов. Для одного и того же ВВ в одних условиях реакцию взрывчатого превращения можно классифицировать как интенсивное горение (порох в стволе орудия). В других условиях процесс взрывчатого превращения этого же ВВ происходит в виде взрыва или даже детонации (например, взрыв того же пороха в шпуре). И хотя при взрыве или детонации присутствуют процессы, свойственные горению, их влияние на общий механизм взрывчатого разложения оказывается незначительным.

2.2. Классификация взрывчатых веществ

В настоящее время известно огромное число химических веществ, способных к реакциям взрывного разложения, их количество постоянно увеличивается. По своему составу, физико-химическим свойствам, по способности к возбуждению в них реакций взрыва и по ее распространению эти вещества существенно отличаются друг от друга. Для удобства изучения ВВ их объединяют в те или иные группы по различным признакам. Мы остановимся на трех основных признаках классификации:


  • по составу;

  • по назначению;

  • по восприимчивости к взрывному превращению (взрывоопасности).
По составу все ВВ подразделяются на однородные взрывчатые химические соединения и взрывчатые смеси.

Взрывчатые химические соединения представляют собой неустойчивые химические системы, способные под влиянием внешних воздействий к быстрым экзотермическим превращениям, в результате которых происходит полный разрыв внутримолекулярных связей и последующая рекомбинация свободных атомов, ионов, группы атомов в термодинамически устойчивые продукты (газы). Большинство ВВ этой группы представляют собой кислородсодержащие органические соединения, а их химическая реакция разложения является реакцией полного и частичного внутримолекулярного окисления. Примерами таких ПВВ могут служить тротил и нитроглицерин (как составные части ПВВ). Однако есть и другие взрывчатые соединения (азид свинца, Рb(N 3 ) 2 ), не содержащие кислорода, способные к экзотермическим реакциям химического разложения при взрыве.

Взрывчатые смеси представляют собой системы, состоящие, по крайней мере, из двух химически не связанных между собой компонентов. Обычно один из компонентов смеси представляет собой вещество, относительно богатое кислородом (окислитель), а второй компонент – горючее вещество, совсем не содержащее кислорода, либо содержащее его в количествах, недостаточных для полного внутримолекулярного окисления. К первым – можно отнести дымный порох, эмульсионные ВВ, ко вторым – аммотол, гранулиты и др.

Необходимо отметить, что есть так называемая промежуточная группа взрывчатых смесей:


  • вещества одинаковой природы (взрывчатые химические соединения) с различным содержанием активного кислорода (тротил, гексоген).

  • взрывчатое химическое соединение в инертном наполнителе (динамит).
Взрывчатые смеси (как и взрывчатые химические соединения) могут находиться в газообразном, жидком и твердом состояниях.

По назначению взрывчатые вещества подразделяются на четыре основные группы:


  • инициирующие ВВ;

  • бризантные ВВ (в том числе класс промышленных ВВ);

  • метательные ВВ (пороха и топлива);

  • пиротехнические составы (в том числе и ПВВ, дымный порох и другие воспламенители).
Отличительной особенностью ИВВ является их высокая чувствительность к внешним воздействиям (удар, накол, электричество, луч огня), взрываться в ничтожно малых количествах и вызывать взрывчатое превращение других ВВ намного менее чувствительных.

Бризантные ВВ обладают большим запасом энергии, менее чувствительны к воздействию начальных импульсов.

Основным видом химического разложения ИВВ и БрВВ является детонация.

Характерным признаком (видом) химического разложения метательных ВВ является горение. Для пиротехнических составов – основным видом реакции взрывного превращения является также горение, хотя некоторые из них способны к реакции взрыва. Большинство пиротехнических составов представляют собой смеси (механические) горючих и окислителей с различными цементирующими и специальными добавками, создающими определенный эффект.

По восприимчивости к взрывчатому превращению взрывчатые вещества подразделяются на:


  • первичные;

  • вторичные;

  • третичные.
К категории первичных относятся инициирующие ВВ. К категории вторичных относятся бризантные ВВ. Их детонацию возбудить труднее, чем у ИВВ, они менее опасны в обращениях, хотя и являются более мощными. Детонация БВВ (вторичных) возбуждается взрывом инициирующих средств.

К категории третичных относятся ВВ со слабо выраженными взрывчатыми свойствами. Типичными представителями третичных ВВ можно считать аммиачную селитру и эмульсию окислителя в горючем (эмульсионные ВВ). Третичные ВВ практически безопасны в обращении, в них весьма трудно возбудить реакцию разложения. Часто эти вещества относятся к категории невзрывчатых. Однако полное пренебрежение к их взрывчатым свойствам может привести к трагическим последствиям. При смешении третичных ВВ с горючими или при добавке сенсибилизаторов их взрывоопасность повышается.

2.3. Общие сведения о детонации, особенности

детонации промышленных ВВ

Согласно гидродинамической теории детонацией считают перемещение по ВВ зоны химического превращения, ведомой ударной волной постоянной амплитуды. Амплитуда и скорость перемещения ударной волны постоянные, так как диссипативные потери, сопровождающие ударное сжатие вещества, компенсируются тепловой реакцией превращения ВВ. В этом одно из главных отличий волны детонации от ударной волны, распространение которой в химически неактивных материалах сопровождается спадом скорости и параметров волны (затухание).

Детонация различных твердых взрывчатых веществ протекает со скоростями от 1500 до 8500 м/с.

Основной характеристикой детонации ВВ является скорость детонации, т.е скорость распространения по ВВ детонационной волны. Благодаря очень быстрой скорости распространения детонационной волны по заряду ВВ изменения его параметров [давления (Р ), температуры (Т ), объема (V )] во фронте волны происходят скачкообразно, как и в ударной волне.

Схема изменения параметров (Р,Т,V ) при детонации твердого ВВ приведена на рисунке 2.1.

Рисунок 2.1- Схема изменения параметров при детонации твердых ВВ

Давление (Р ) скачкообразно возрастает на фронте ударной волны, а затем в зоне химической реакции начинает постепенно падать. Температура Т так же скачкообразно возрастает. но в меньшей мере, чем Р , а затем по мере химического превращения ВВ несколько возрастает. Объем V , занимаемый ВВ, благодаря высокому давлению уменьшается и остается практически неизменным до конца превращения ВВ в продукты детонации.

Гидродинамическая теория детонации (русский ученый В.А. Михальсон (1890), англ. ученый физик Д. Чепмен, франц. ученый физик Э.Жуге), основанная на теории ударной волны (Ю.Б.Харитон, Я.Б.Зельдович, Л.Д.Ландау), дает возможность, пользуясь данными о теплоте превращения ВВ и о свойствах продуктов детонации (средняя молекулярная масса, теплоемкость и др.), установить математическую зависимость между скоростью детонации, скоростью движения продуктов взрыва, объемом и температурой продуктов детонации.

Для установления этих зависимостей используют общепринятые уравнения, выражающие законы сохранения вещества, количества движения и энергии при переходе от исходного ВВ к его продуктам детонации, а также так называемое уравнение Жуге и уравнение состояния продуктов детонации, выражающее зависимость между основными характеристиками продуктов взрыва. Согласно уравнению Жуге при установившемся процессе скорость детонации D равна сумме скорости движения продуктов детонации за фронтом и скорости звука с в продуктах детонации:

D =  +с. (2.1)

Для продуктов детонации «газов», имеющих сравнительно небольшое давление, применяют общеизвестное уравнение состояния идеальных газов:

PV=RT , (2.2)

Где P – давление,

V – удельный объем,

R – газовая постоянная,

Т – температура.

Для продуктов детонации конденсированных ВВ Л.Д. Ландау и К.П. Станюковичем было выведено уравнение состояния:

PV n =const , (2.3)

Где P и V - давление и объем продуктов взрыва в момент их образования;

n = 3 - показатель степени в уравнении состояния для конденсированных ВВ (показатель политропы) при плотности ВВ >1.

Скорость детонации по гидродинамической теории

, (2.4)

Где - теплота взрывчатого превращения.

Однако получаемые по этому выражению значения
всегда завышены, даже с учетом переменного, зависящего от плотности ВВ, значения «n ». Тем не менее, для ряда оценок полезно пользоваться подобной зависимостью в общем виде:

D = ƒ (p о )
, (2.5)

Где p о – плотность ВВ.

Для приближенных оценок скорости детонации нового вещества (если нет возможности экспериментального определения ее) можно пользоваться следующим отношением:

, (2.6)

Где индекс «х » относится к неизвестному (новому веществу), а «ЭТ » - к эталонному с известной скоростью детонации при равных плотностях и предполагаемых близких значениях политропы (n ).

Таким образом, скорость детонации зависит от трех основных характеристик ВВ: теплоты его взрыва, плотности и состава продуктов взрыва (через «n » и «М * »).

Превращение ВВ в форме детонации является наиболее желательным, так как оно обеспечивает значительную скорость химического превращения и создает наибольшие давление и плотность продуктов взрыва. Данное положение может быть соблюдено при условии, сформулированном Ю.Б.Харитоном:

   , (2.7)

Где - длительность химического превращения ВВ;

 - время разбрасывания исходного ВВ.

Ю.Б.Харитон ввел понятие критического диаметра, величина которого является одной из важнейших характеристик ВВ. Соотношение времени реакции и времени разброса позволяет дать правильное объяснение наличия для каждого ВВ критического или предельного диаметра.

Если принять скорость звука в продуктах взрыва через «с» , а диаметр заряда через «d», то время разбрасывания вещества приблизительно можно определить из выражения

. (2.8)

Учитывая, что условием возможности прохождения детонации  >, можно записать >, откуда критический диаметр, т.е. наименьший диаметр, при котором еще может протекать устойчивая детонация ВВ, будет равняться:

d кр =с. (2.9)

Из данного выражения следует, что любой фактор, увеличивающий время разбрасывания вещества, должен способствовать детонации (оболочка, увеличение диаметра). Также будут действовать факторы, ускоряющие процесс химического превращения ВВ в детонационной волне (введение высокоактивных ВВ – мощных и восприимчивых).

Экспериментальные измерения показывают асимптотический характер возрастания скорости детонации с увеличением диаметра заряда. Начиная с предельного диаметра заряда d пр , при дальнейшем его увеличении скорость практически не возрастает (рисунок 2.2).

Рисунок 2.2 - Зависимость скорости детонации D от диаметра заряда d з :

D И -идеальная скорость детонации; d кр –критический диаметр; d пр – предельный диаметр.

Критические геометрические характеристики заряда зависят также от плотности ВВ и его однородности. Для индивидуальных ВВ с увеличением плотности уменьшается d кр , вплоть до области, близкой к плотности монокристалла, где, как показал А.Я.Апин, может наблюдаться некоторое увеличение d кр (например для тротила).

Если диаметр заряда ВВ значительно выше критического, то повышение плотности ВВ приводит к увеличению скорости детонации, достигающей предела при максимально возможной плотности ВВ.

Для аммиачно-селитренных ВВ критические диаметры сравнительно велики. В обычно применяемых зарядах влияние плотности имеет двойственный характер –увеличение плотности вначале приводит к повышению скорости детонации (D ), а затем при дальнейшем увеличении плотности скорость детонации начинает падать и может наступить затухание детонации. Для каждого аммиачно-селитринного ВВ, в зависимости от условий его применения, существует своя «критическая» плотность. Критической называют ту максимальную плотность, при которой (в данных условиях) еще возможна устойчивая детонация ВВ. При небольшом повышении плотности «заряда» выше критической детонация затухает.

Критическая плотность (p кр ) (точки максимума на кривой D= ( о ) ) не является константой того или иного промышленного ВВ, определяемой его химическим составом. Она меняется с изменением физических характеристик ВВ (размеров частиц, равномерности распределения частиц компонентов в массе вещества), поперечных размеров зарядов, наличием и свойствами оболочки заряда.

Исходя из данных представлений, вторичные ВВ делятся на две большие группы. Для ВВ 1-го типа, к которым относятся в основном мощные мономолекулярные ВВ (тротил, гексоген и др.), критический диаметр стационарной детонации уменьшается с увеличением плотности ВВ. Для ВВ 2-го типа, наоборот, критический диаметр увеличивается при уменьшении пористости (увеличении плотности) ВВ. Представителями этой группы являются, например, аммиачная селитра, перхлорат аммония, и ряд смесевых промышленных ВВ: АСДТ (аммиачная селитра + +диз. топливо); эмульсионные ВВ и др.

Для ВВ 1-го типа скорость детонации D цилиндрического заряда диаметром d монотонно растет при увеличении плотности о взрывчатого вещества. Для ВВ 2-го типа скорость детонации сначала растет при уменьшении пористости ВВ, достигает максимума, а затем уменьшается, вплоть до прекращения детонации при так называемой критической плотности. Немонотонное поведение зависимости D= ( о ) для смесевых (промышленных) ВВ связывается с затруднительной фильтрацией взрывных газов, поглощением энергии детонационной волны инертными добавками, многостадийностью взрывного превращения отдельных компонентов, неполным перемешиванием продуктов взрыва компонентов и рядом других факторов.

Считается, что при уменьшении пористости ВВ скорость детонации сначала растет за счет увеличения удельной энергии взрыва Q V , так как D ~
, а затем по указанным выше причинам уменьшается.

2.4. Основные характеристики ВВ.

Чувствительность ВВ

С момента появления ВВ установлена их высокая опасность при механических и тепловых воздействиях (удар, трение, вибрация, нагрев). Способность ВВ взрываться при механических воздействиях определяли как чувствительность к механическим воздействиям, а способность ВВ взрываться при тепловом воздействии определяли как чувствительность к тепловым воздействиям (тепловому импульсу). Интенсивность воздействия, или, как говорят, величина минимального начального импульса, необходимого для возбуждения реакции взрывчатого разложения, для различных ВВ может быть различной и зависит от их чувствительности к тому или иному виду импульса.

Для оценки безопасности производства, транспортирования и хранения промышленных ВВ большое значение приобретает их чувствительность к внешним воздействиям.

Существуют различные физические модели возникновения и развития взрыва при локальных внешних воздействиях (ударе, трении). В учении о чувствительности ВВ получили распространение две концепции о причинах возникновения взрыва при механических воздействиях – тепловая и нетепловая. О причинах возникновения взрыва при тепловом воздействии (нагреве) все однозначно и понятно.

Согласно нетепловой теории – к возбуждению взрыва приводит деформация молекул и разрушение внутримолекулярных связей вследствие приложения к веществу некоторых критических давлений всестороннего сжатия или сдвиговых напряжений. В соответствии с тепловой теорией возникновения взрыва энергия механического воздействия диссипирует (рассеивается) в виде тепла, приводящего к разогреву и воспламенению ВВ. В создании представлений о тепловой природе чувствительности ВВ большое влияние оказали идеи и методы теории теплового взрыва, разработанной академиками Н.Н.Семеновым, Ю.Б. Харитоном и Я.Б.Зельдовичем, Д.А.Франк-Каменецким, А.Г.Мержановым.

Поскольку скорость термического разложения ВВ, определяющая возможность протекания реакции по механизму теплового взрыва, является экспоненциальной функцией температуры (закон Аррениуса: k=k о e - Е/RT), то становится понятным, почему не общее количество диссипируемого тепла, а его распределение по объему ВВ должно играть решающую роль в процессах инициирования взрыва. В этой связи представляется закономерным то обстоятельство, что различные пути, по которым механическая энергия превращается в тепло, неравноценны между собой. Эти представления явились отправной точкой для создания локально-тепловой (очаговой) теории инициирования взрыва. (Н.А.Холево, К.К.Андреев, Ф.А.Баум и др.).

Согласно очаговой теории возбуждения взрываэнергия механического воздействия диссипирует не равномерно по всему объему ВВ, а локализируется в отдельных участках, являющихся, как правило, физическими и механическими неоднородностями взрывчатого вещества. Температура таких участков («горячих точек») намного превышает температуру окружающего однородного тела (вещества).

Каковы же причины появления очага разогрева при механическом воздействии на ВВ? Можно считать, что внутреннее трение является основным источником разогрева вязкопластичных тел, обладающих однородной физической структурой. Высокотемпературные очаги разогрева в жидких ВВ при ударно-механических воздействиях в основном связаны с адиабатическим сжатием и разогревом газа или паров ВВ в небольших пузырьках, рассеянных по объему жидкого ВВ.

Каков же размер горячих точек? Предельный размер горячих точек, способных привести к взрыву ВВ при механических воздействиях, составляет 10 -3 – 10 -5 см, необходимое повышение температуры в очагах достигается 400-600 К, а длительность разогрева колеблется от 10 -4 до 10 -6 с.

Л.Г.Болховитинов сделал вывод о наличии минимального размера пузырька, который способен схлопываться адиабатически (без теплообмена с окружающей средой). Для типичных условий механического удара его величина составляет порядка 10 -2 см. Кинокадры схлопывания воздушной полости представлены на рисунке 2.3

Рисунок 2.3 - Этапы схлопывания пузырьков при сжатии

Отчего зависит чувствительность ВВ и какие факторы влияют на ее величину?

К числу таких факторов можно отнести физическое состояние, температуру и плотность вещества, а так -же наличие примесей во взрывчатом веществе. С повышением температуры ВВ его чувствительность к удару (трению) возрастает. Однако столь очевидный постулат не всегда однозначен на практике. В качестве доказательства этого всегда приводится пример, когда заряды аммиачной селитры с добавлением мазута (3 %) и песка (5%), в середину которых помещали стальные пластины, взрывались от прострела пулей при обычной температуре, но не взрывались в этих же условиях при предварительном нагреве заряда до 60 0 С. С.М.Муратов указывал, что в данном примере не учтен фактор изменения физического состояния заряда при изменении температуры и, что особенно важно, – условия межграничного трения между движущимся предметом и зарядом ВВ. Влияние температуры часто нивелируется другими факторами, связанными с температурой.

Увеличение плотности ВВ обычно снижает чувствительность к удару (трению).

Чувствительность ВВ можно целенаправленно регулировать введением добавок. Для снижения чувствительности ВВ вводят флегматизаторы, для увеличения – сенсибилизаторы.

В практике работ часто можно встретиться с такими сенсибилизирующими добавками – песок, мелкие частицы породы, металлическая стружка, частицы стекла.

Тротил, дающий в чистом виде при испытании на чувствительность к удару 4-12 % взрывов, при введении в него 0,25 % песка дает 29 % взрывов, а при введении 5 % песка – 100 % взрывов. Сенсибилизирующее влияние примесей объясняется тем, что включение твердых веществ в ВВ способствует при ударе концентрации энергии на твердых частицах и их острых гранях и облегчает условия создания локальных «горячих очагов».

Вещества с твердостью, меньшей твердости частиц ВВ, смягчают удар, создают возможность свободного движения частиц ВВ и тем самым снижают вероятность концентрации энергии в отдельных «точках». В качестве флегматизаторов обычно используют легкоплавкие вещества, маслянистые жидкости, обладающие хорошей обволакивающей способностью, высокими теплоемкостями: парафин, церезин, вазелин, различные масла. Флегматизатором ВВ является также вода.

2.5. Практическая оценка чувствительности ВВ

Для практической оценки (определения) параметров чувствительности существуют различные методы.

2.5.1. Чувствительность ВВ к тепловому

воздействию (импульсу)

Минимальная температура, при которой в течение условно заданного отрезка времени теплоприход становится больше теплоотвода и химическая реакция вследствие самоускорения принимает характер взрывчатого превращения, называется температурой вспышки.

Температура вспышки зависит от условий испытания ВВ – величины навески, конструкции прибора и скорости нагрева, поэтому условия испытания должны быть строго регламентированы.

Промежуток времени от начала нагревания при заданной температуре до момента возникновения вспышки называют периодом задержки вспышки.

Задержка вспышки бывает тем меньше, чем выше температура, действию которой подвергается вещество.

Для определения температуры вспышки, характеризующей чувствительность ВВ к нагреву, используют прибор «для определения температуры вспышки» (навеска ВВ-0,05 г, минимальная температура, при которой вспышка происходит через 5 мин., после помещения ВВ в нагретую баню).

Температура вспышки составляет для

Более полно чувствительность ВВ к нагреву характеризует кривая, показывающая зависимость

Т всп = ƒ(τ зад).

а в

Рисунок 2.4 - Зависимость времени задержки вспышки (τ зад) от температуры нагрева (о С ) – график «а », и также зависимость в логарифмической форме (координатах Аррениуса) lgτ зад - ƒ(1/Т, К) – график «в ».

2.5.2. Чувствительность к огню

(воспламеняемость)

Промышленные ВВ испытывают на восприимчивость от луча огня огнепроводного шнура. Для этого 1 г ПВВ помещают в пробирку, укрепленную на штативе. В пробирку вводят конец ОША, чтобы он находился на расстоянии 1 см от ВВ. При сгорании шнура луч пламени, воздействуя на ВВ, может вызвать его воспламенение. На взрывных работах применяются только те ВВ, которые в 6 параллельных определениях не дают ни одной вспышки или взрыва. Не выдерживающие такое испытание ВВ, например порох, используют на взрывных работах только в исключительных случаях.

В другом варианте испытания определяют максимальное расстояние, при котором еще воспламеняется ВВ.

Большую часть истории человек использовал для уничтожения себе подобных всевозможные виды холодного оружия, начиная от незамысловатого каменного топора, и заканчивая весьма продвинутыми и сложными в изготовлении металлическими орудиями. Примерно в XI–XII столетии в Европы начали применять пушки, и тем самым человечество познакомилось с важнейшим взрывчатым веществом – черным порохом.

Это был поворотный момент в военной истории, хотя понадобилось еще примерно восемь столетий, чтобы огнестрельное оружие полностью вытеснило с полей сражений остро наточенную сталь. Параллельно прогрессу пушек и мортир развивались взрывчатые вещества — причем не только порох, но и всевозможных составов для снаряжения артиллерийских снарядов или изготовления фугасов. Разработка новых взрывчатых веществ и взрывных устройств активно продолжается и в наши дни.

Сегодня известны десятки взрывчатых веществ. Помимо военных нужд, взрывчатка активно применяется в горном деле, при строительстве дорог и туннелей. Однако прежде чем говорить об основных группах взрывчатых веществ, следует несколько подробнее упомянуть о процессах, происходящих во время взрыва и понять принцип действия взрывчатых веществ (ВВ).

Взрывчатка: что это такое?

Взрывчатые вещества – это большая группа химических соединений или смесей, которые под воздействием внешних факторов способны к быстрой, самоподдерживающейся и неуправляемой реакции с выделением большого количества энергии. Проще говоря, химический взрыв – это процесс преобразования энергии молекулярных связей в тепловую энергию. Обычно его результатом является большое количество раскаленных газов, которые и выполняют механическую работу (дробление, разрушение, перемещение и др.).

Классификация взрывчатых веществ довольно сложна и запутанна. К ВВ относятся вещества, которые распадаются не только в процессе взрыва (детонации), но и медленного или быстрого горения. К последней группе относятся пороха и различные виды пиротехнических смесей.

Вообще, понятия «детонация» и «дефлаграция» (горение) являются ключевыми для понимания процессов химического взрыва.

Детонацией называют стремительное (сверхзвуковое) распространение фронта сжатия с сопутствующей ему экзотермической реакцией во взрывчатом веществе. В этом случае химические превращения идут настолько бурно и выделяется такое количество тепловой энергии и газообразных продуктов, что в веществе образуется ударная волна. Детонация – это процесс максимально быстрого, можно сказать, лавинообразного вовлечения вещества в реакцию химического взрыва.

Дефлаграция, или горение – это тип окислительно-восстановительной химической реакции, во время которой ее фронт перемещается в веществе за счет обычной теплоотдачи. Подобные реакции хорошо всем известны и часто встречаются в повседневной жизни.

Любопытно, что энергия, выделяемая при взрыве, не так уж и велика. Например, при детонации 1 кг тротила ее выделяется в несколько раз меньше, чем при сгорании 1 кг каменного угля. Однако при взрыве это происходит в миллионы раз быстрее, вся энергия выделяется практически мгновенно.

Следует отметить, что скорость распространения детонации – это важнейшая характеристика взрывчатых веществ. Чем она выше, тем более эффективен заряд взрывчатки.

Чтобы запустить процесс химического взрыва необходимо воздействие внешнего фактора, он может быть нескольких видов:

  • механический (накол, удар, трение);
  • химический (реакция какого-либо вещества с зарядом взрывчатки);
  • внешняя детонация (взрыв в непосредственной близости от ВВ);
  • тепловой (пламя, нагревание, искра).

Следует отметить, что разные виды ВВ имеют различную чувствительность к внешним воздействиям.

Некоторые из них (например, черный порох) прекрасно реагируют на тепловое воздействие, но при этом практически не откликается на механическое и химическое. А для подрыва тротила нужно только детонационное воздействие. Гремучая ртуть бурно реагирует на любой внешний раздражитель, а есть некоторые ВВ, которые детонируют вообще безо всякого внешнего воздействия. Практическое использование таких «взрывоопасных» ВВ попросту невозможно.

Основные свойства ВВ

Главными из них являются:

  • температура продуктов взрыва;
  • теплота взрыва;
  • скорость детонации;
  • бризантность;
  • фугасность.

На последних двух пунктах следует остановиться отдельно. Бризантность ВВ – это его способность разрушать прилегающую к нему среду (горную породу, металл, дерево). Данная характеристика во многом зависит от физического состояния, в котором находится взрывчатка (степень измельчения, плотность, однородность). Бризантность напрямую зависит от скорости детонации взрывчатого вещества — чем она выше, тем лучше ВВ может дробить и разрушать окружающие предметы.

Бризантные взрывчатые вещества обычно используют для снаряжения артиллерийских снарядов, авиабомб, мин, торпед, гранат и других боеприпасов. Этот тип ВВ менее чувствителен к внешним факторам, чтобы подорвать такой заряд взрывчатого вещества необходима внешняя детонация. В зависимости от своей разрушительной силы бризантные взрывчатые вещества делятся на:

  • Повышенной мощности: гексоген, тетрил, оксоген;
  • Средней мощности: тротил, мелинит, пластид;
  • Пониженной мощности: ВВ на основе аммиачной селитры.

Чем выше бризантность ВВ, тем лучше оно разрушит корпус бомбы или снаряда, придаст осколкам большую энергию и создаст более мощную ударную волну.

Не менее важным свойством взрывчатых веществ является его фугасность. Это самая общая характеристика любого ВВ, она показывает насколько та или иная взрывчатка обладает разрушающей способностью. Фугасность напрямую зависит от количества газов, которые образовываются при взрыве. Следует отметить, что бризантность и фугасность, как правило, не связаны между собой.

Фугасность и бризантность определяют то, что мы называем мощностью или силой взрыва. Однако для различных целей необходимо подбирать соответствующие виды ВВ. Бризантность очень важна для снарядов, мин и авиабомб, а вот для горных работ больше подойдет взрывчатка со значительным уровнем фугасности. На практике подбор ВВ гораздо более сложен, и чтобы правильно выбрать взрывчатку, следует учитывать все ее характеристики.

Существует общепринятый способ определения мощности различных взрывчатых веществ. Это так называемый тротиловый эквивалент, когда мощность тротила условно принимается за единицу. Используя этот способ можно высчитать, что мощность 125 гр тротила равна 100 гр гексогена и 150 гр аммонита.

Еще одной важной характеристикой взрывчатых веществ является их чувствительность. Она определяется вероятностью взрыва ВВ при воздействии на него того или иного фактора. От этого параметра зависит безопасность производства и хранение взрывчатых веществ.

Чтобы лучше показать, насколько важна эта характеристика взрывчатого вещества, можно сказать, что американцы разработали специальный стандарт (STANAG 4439) для чувствительности взрывчатых веществ. И на это им пришлось пойти не от хорошей жизни, а после череды тяжелейших несчастных случаев: при подрыве на американской базе ВВС «Бьен-Хо» во Вьетнаме погибли 33 человека, вследствие взрывов на авианосце «Форрестол» были повреждены около 80 самолетов, а также после детонации авиаракет на авианосце «Орискани» (1966 год). Так что хороша не просто мощная взрывчатка, а детонирующая именно в нужный момент — и никогда больше.

Все современные ВВ – это либо химические соединения, либо механические смеси. К первой группе относятся гексоген, тротил, нитроглицерин, пикриновая кислота. Химические взрывчатые вещества, как правило, получают нитрованием различных видов углеводородов, что приводит к введению в их молекулы азота и кислорода. Ко второй группе – аммиачно-селитренные ВВ. В состав взрывчатых веществ подобного типа обычно входят вещества, богатые кислородом и углеродом. Для повышения температуры взрыва в смеси часто добавляют порошки металлов: алюминия, бериллия, магния.

Кроме всех вышеперечисленных свойств, любое взрывчатое вещество должно быть химически стойким и пригодным для длительного хранения. В 80-х годах прошлого века китайцы сумели синтезировать мощнейшую взрывчатку – трициклическую мочевину. Ее мощность превосходила тротил в двадцать раз. Проблема была в том, что через несколько дней после изготовления вещество разлагалось и превращалось в слизь, непригодную для дальнейшего использования.

Классификация взрывчатых веществ

По своим взрывчатым свойствам ВВ делятся на:

  1. Инициирующие. Они используются для подрыва (детонации) других взрывчатых веществ. Основными отличиями ВВ этой группы является высокая чувствительность к инициирующим факторам и высокая скорость детонации. К этой группе относятся: гремучая ртуть, диазодинитрофенол, тринитрорезорцинат свинца и другие. Как правило, эти соединения используются в капсюлях-воспламенителях, запальных трубках, капсюлях-детонаторах, пиропатронах, самоликвидаторах;
  2. Бризантные взрывчатые вещества. Этот тип ВВ обладает значительным уровнем бризантности и используется в качестве основного заряда для подавляющего большинства боеприпасов. Эти мощные взрывчатые вещества отличаются по своему химическому составу (N-нитрамины, нитраты, другие нитросоединения). Иногда их используют в виде различных смесей. Бризантные взрывчатые вещества также активно используют в горном деле, при прокладке туннелей, проведении других инженерных работ;
  3. Метательные взрывчатые вещества. Являются источником энергии для метания снарядов, мин, пуль, гранат, а также для движения ракет. К этому классу взрывчатых веществ относятся пороха и различные виды ракетного топлива;
  4. Пиротехнические составы. Используются для снаряжения специальных боеприпасов. При сгорании производят специфический эффект: осветительный, сигнальный, зажигательный.

Взрывчатые вещества разделяют и по их физическому состоянию на:

  1. Жидкие. Например, нитрогликоль, нитроглицерин, этилнитрат. Существуют и разнообразные жидкостные смеси ВВ (панкластит, взрывчатые вещества Шпренгеля);
  2. Газообразные;
  3. Гелеобразные. Если растворить нитроцеллюлозу в нитроглицерине, то получится так называемый гремучий студень. Это крайне нестабильное, но довольно мощное взрывчатое гелеобразное вещество. Его любили использовать российские революционеры-террористы в конце XIX века;
  4. Суспензии. Довольно обширная группа взрывчатых веществ, которые в наши дни применяются для промышленных целей. Существуют различные виды взрывчатых суспензий, в которых ВВ либо окислитель является жидкой средой;
  5. Эмульсионные взрывчатые вещества. Весьма популярный в наши дни вид ВВ. Часто используется в строительных или шахтных работах;
  6. Твердые. Наиболее распространенная группа ВВ. К ней относятся практически все взрывчатые вещества, используемые в военном деле. Могут быть монолитными (тротил), гранулированными или порошкообразными (гексоген);
  7. Пластичные. Эта группа взрывчатых веществ обладает пластичностью. Такая взрывчатка стоит дороже обычной, поэтому ее редко применяют для снаряжения боеприпасов. Типичным представителем этой группы является пластид (или пластит). Его часто используют при проведении диверсий для подрыва конструкций. По своему составу пластид – это смесь гексогена и какого-либо пластификатора;
  8. Эластичные.

Немного истории ВВ

Первым взрывчатым веществом, которое было придумано человечеством, стал черный порох. Считается, что он был изобретен в Китае еще в VII веке нашей эры. Однако надежных подтверждений этому до сих пор так и не обнаружено. Вообще вокруг пороха и первых попыток его применения создано немало мифов и явно фантастических историй.

Существуют древнекитайские тексты, в которых описаны смеси, похожие по составу на черный дымный порох. Их использовали в качестве лекарств, а также для пиротехнических шоу. Кроме того, есть многочисленные источники, утверждающие, что в следующих столетиях китайцы активно использовали порох для производства ракет, мин, гранат и даже огнеметов. Правда, иллюстрации некоторых видов этого древнего огнестрельного оружия заставляют усомниться в возможности его практического применения.

Еще до пороха в Европе стали применять «греческий огонь» - горючее взрывчатое вещество, рецепт которого, к сожалению, не дошел до наших дней. «Греческий огонь» представлял собой легковоспламеняющуюся смесь, которая не только не тушилась водой, но даже становилась в контакте с ней еще более огнеопасной. Этот ВВ был придуман византийцами, они активно использовали «греческий огонь» как на суше, так и в морских баталиях, и хранили его рецептуру в строжайшем секрете. Современные эксперты считают, что в состав этой смеси входили нефть, смола, сера и негашёная известь.

Порох впервые появился в Европе примерно в середине XIII века и до сих пор неизвестно, как именно он попал на континент. Среди европейских изобретателей пороха часто упоминают имена монаха Бертольда Шварца и английского ученого Роджера Бэкона, хотя единого мнения у историков нет. По одной из версий порох, изобретенный в Китае, через Индию и Ближний Восток попал в Европу. Так или иначе, уже в XIII столетии европейцы знали о порохе и даже пытались использовать это кристаллическое взрывчатое вещество для мин и примитивного огнестрельного оружия.

Долгие столетия порох оставался единственным видом ВВ, которое знал и применял человек. Только на рубеже XVIII–XIX веков, благодаря развитию химии и других естественных наук, развитие взрывчатых веществ достигло новых высот.

В конце XVIII века благодаря французским химикам Лавуазье и Бертолле появился так называемые хлоратный порох. В это же время было изобретено «гремучее серебро», а также пикриновая кислота, которая в будущем стала использоваться для снаряжения артиллерийских снарядов.

В 1799 году английским химиком Говардом была найдена «гремучая ртуть», которая до сих пор используется в капсюлях в качестве инициирующего взрывчатого вещества. В начале XIX века был получен пироксилин – взрывчатое вещество, которым можно было не только снаряжать снаряды, но и изготавливать из него бездымный порох.динамит . Это мощное взрывчатое вещество, однако оно отличается повышенной чувствительностью. Во время Первой Мировой войны динамитом пытались снаряжать снаряды, но от этой идеи довольно быстро отказались. Динамит еще долго использовали в горных работах, но в наши дни эта взрывчатка давно не производится.

В 1863 году немецкие ученые открыли тротил, а в 1891 году в Германии началось промышленное производство этого взрывчатого вещества. В 1897 году немецкий химик Ленце синтезировал гексоген – одно из самых мощных и распространенных взрывчатых веществ в наши дни.

Разработка новых взрывчатых веществ и взрывных устройств продолжалась все прошлое столетие, исследования в этом направлении идут и сегодня.

Пентагону новую взрывчатку на основе гидразина, которая якобы была в 20 раз мощнее тротила. Однако был у этого ВВ и один ощутимый минус – абсолютно мерзкий запах заброшенного привокзального туалета. Проверка показала, что по мощности новое вещество превосходит тротил всего лишь в 2-3 раза, и от использования решили отказаться. После этого EXCOA предложила другой способ применения взрывчатого вещества: делать с его помощью окопы.

Вещество тонкой струйкой поливалось на землю, а затем подрывалось. Тем самым в считанные секунды можно было получить окоп полного профиля без лишних усилий. Несколько комплектов взрывчатки отправили во Вьетнам для испытания в боевых условиях. Конец этой истории был забавным: окопы, полученные с помощью взрыва, имели такой отвратительный запах, что солдаты отказывались находиться в них.

В конце 80-х американцы разработали новую взрывчатку – CL-20. По информации некоторых СМИ, ее мощность едва ли не в двадцать раз превышает тротил. Однако из-за своей высокой цены (1300 долларов за 1 кг) широкомасштабное производство нового ВВ так и не было начато.


Top