Исследовательская работа "последние цифры степеней". Старт в науке


МОУ «Шербакульская средняя общеобразовательная школа №1»

Научное сообщество учащихся «Поиск»

Тема: « Последняя цифра степени.»

Выполнила: ученица 7 «б» класса

Терентьева Валентина

Руководитель: Пушило Т.Л.

р.п. Шербакуль

2010 – 2011 уч. год

    Введение.

    Цели работы.

    Последняя цифра степени.

    Закономерности возведения в степень

    Две последних цифры степени.

    Задачи.

    Заключение.

    Использованная литература.

Введение.

Однажды, листая страницы книги «Тысяча проблемных задач по математике», я увидела с первого взгляда очень трудную задачу, точнее сказать пример надо было найти последнюю цифру суммы

1 1989 + 2 1989 + 3 1989 + 4 1989 + 5 1989 +…+ 1989 1989 .

Потом я подумала, а ведь должен же быть, какой-нибудь рациональный способ вычисления и тут я принялась считать…

Гипотеза: Можно ли сказать какой будет последняя цифра у любой степени?

Цели работы:

      Узнать, можно ли построить таблицу последних цифр различных степеней.

      Найти закономерность в них.

      Используя таблицу практиковаться на более легких задачах и решить вышеупомянутый пример и если получится более сложные.

Последняя цифра степени.

Приведем небольшое исследование: выясним есть ли какая-нибудь закономерность в том, как меняется последняя цифра числа 2 n , где n – натуральное число, с изменением показателя n . Для этого рассмотрим таблицу:

Мы видим, что через каждые четыре шага последняя цифра повторяется. Заметив это, нетрудно определить последнюю цифру степени 2 n для любого показателя n .

В самом деле, возьмем число 2 100 . Если бы мы продолжили таблицу, то оно попало бы в столбец, где находятся степени 2 4 , 2 8 , 2 12 , показатели которых кратны четырем. Значит, число 2 100 , как и эти степени, оканчивается цифрой 6.

Возьмем к примеру, 2 22 , если проверить, просто посчитав, то получится 4194304 – последняя цифра 4.

Теперь попробуем пользоваться таблицей, но в таблице 4 числа, а показатель степени 22, однако, после последнего числа этот «круг» начинается заново. Поэтому, показатель степени 22 делим на 4, получаем число 5 и остаток 2 т.е мы сделаем 5 «кругов», и отсчитаем ещё 2 в перед, а второе число – это 4, значит, таблица работает.

А теперь посмотрим, можно ли составить таблицы для остальных чисел. Все описывать не буду, лишь скажу, что у меня получилось составить таблицу для всех чисел от 1 до 10, а далее будет повторяться, допустим, у 12 последние числа будут такие же, как и у 2, а у 25 – так же, как и у 5.

Закономерности возведения в степень:

    Запись числа, являющегося полным квадратом, может оканчиваться только цифрами 0, 1, 4, 5, 6 или 9.

    Если запись числа оканчивается цифрой 0, 1, 5 или 6,то возведение в любую степень не изменит последние цифры.

    При возведении любого числа в пятую степень его последняя цифра не изменится.

    Если число оканчивается цифрой 4 (или 9), то при возведении в нечетную степень последняя цифра не изменяется, а при возведении в четную степень изменится на 6 (или 1 соответственно).

    Если число оканчивается цифрой 2, 3, 7 или 8, то при возведении в степень возможны четыре различных цифры.

Две последних цифры степени.

Мы теперь знаем, что последняя цифра рано или поздно будет повторяться. Но как же обстоит дело с 2-мя последними цифрами? Я осмелюсь предположить, что не только 2, но и 3 и более последних цифр будут повторяться. Что ж проверим это, так же я заметила, что периоды из прошлой таблицы просто увеличились в 5 раз, кроме чисел 5 и 10, а про число 1 я писать не стала, так как результат всегда будет 1.

Степень

Х 2

Х 3

Х 4

Х 5

Х 6

Х 7

Х 8

Х 9

Х 10

Х 11

Х 12

Х 13

Х 14

Х 15

Х 16

Х 17

Х 18

Х 20

Х 21

Х 22

Х 23

Повтор

(Красным кругом выделен период)

Заметим, что у некоторых чисел, например 1-е не входит в период, так как, например, у числа 2, после последнего числа 52, будет 04, а не 02, поэтому оно само не входит в этот период, следовательно, перед тем как вычислять последние 2 цифры надо будет вычесть из показателя степени 1.

К сожалению, с 2-мя последними цифрами не получится как с 1-й, и последние 2 цифры 3 не будут одинаковы с 2-мя последними цифрами 13, и таблицу для остальных надо составлять отдельно.

Степень

Х 2

Х 3

Х 4

Х 5

Х 6

Х 7

Х 8

Х 9

Х 10

Х 11

Х 12

Х 13

Х 14

Последняя цифра степени.

Приведем небольшое исследование: выясним есть ли какая-нибудь закономерность в том, как меняется последняя цифра числа 2 n , где n – натуральное число, с изменением показателя n . Для этого рассмотрим таблицу:

Мы видим, что через каждые четыре шага последняя цифра повторяется. Заметив это, нетрудно определить последнюю цифру степени 2 n для любого показателя n .

В самом деле, возьмем число 2 100 . Если бы мы продолжили таблицу, то оно попало бы в столбец, где находятся степени 2 4 , 2 8 , 2 12 , показатели которых кратны четырем. Значит, число 2 100 , как и эти степени, оканчивается цифрой 6.

Возьмем к примеру, 2 22 , если проверить, просто посчитав, то получится 4194304 – последняя цифра 4.

Теперь попробуем пользоваться таблицей, но в таблице 4 числа, а показатель степени 22, однако, после последнего числа этот «круг» начинается заново. Поэтому, показатель степени 22 делим на 4, получаем число 5 и остаток 2 т.е мы сделаем 5 «кругов», и отсчитаем ещё 2 в перед, а второе число – это 4, значит, таблица работает.

А теперь посмотрим, можно ли составить таблицы для остальных чисел. Все описывать не буду, лишь скажу, что у меня получилось составить таблицу для всех чисел от 1 до 10, а далее будет повторяться, допустим, у 12 последние числа будут такие же, как и у 2, а у 25 – так же, как и у 5.

Закономерности возведения в степень:

    Запись числа, являющегося полным квадратом, может оканчиваться только цифрами 0, 1, 4, 5, 6 или 9.

    Если запись числа оканчивается цифрой 0, 1, 5 или 6,то возведение в любую степень не изменит последние цифры.

    При возведении любого числа в пятую степень его последняя цифра не изменится.

    Если число оканчивается цифрой 4 (или 9), то при возведении в нечетную степень последняя цифра не изменяется, а при возведении в четную степень изменится на 6 (или 1 соответственно).

    Если число оканчивается цифрой 2, 3, 7 или 8, то при возведении в степень возможны четыре различных цифры.

Две последних цифры степени.

Мы теперь знаем, что последняя цифра рано или поздно будет повторяться. Но как же обстоит дело с 2-мя последними цифрами? Я осмелюсь предположить, что не только 2, но и 3 и более последних цифр будут повторяться. Что ж проверим это, так же я заметила, что периоды из прошлой таблицы просто увеличились в 5 раз, кроме чисел 5 и 10, а про число 1 я писать не стала, так как результат всегда будет 1.

Степень

Х 2

Х 3

Х 4

Х 5

Х 6

Х 7

Х 8

Х 9

Х 10

Х 11

Х 12

Х 13

Х 14

Х 15

Х 16

Х 17

Х 18

Х 20

Х 21

Х 22

Х 23

Повтор

(Красным кругом выделен период)

Заметим, что у некоторых чисел, например 1-е не входит в период, так как, например, у числа 2, после последнего числа 52, будет 04, а не 02, поэтому оно само не входит в этот период, следовательно, перед тем как вычислять последние 2 цифры надо будет вычесть из показателя степени 1.

К сожалению, с 2-мя последними цифрами не получится как с 1-й, и последние 2 цифры 3 не будут одинаковы с 2-мя последними цифрами 13, и таблицу для остальных надо составлять отдельно.

Степень

Х 2

Х 3

Х 4

Х 5

Х 6

Х 7

Х 8

Х 9

Х 10

Х 11

Х 12

Х 13

Х 14

Х 15

Х 16

Х 17

Х 18

Х 20

Х 21

Х 22

Х 23

Повтор

ЕГЭ по математике - одно из самых сложных тестирований для выпускников. Многолетняя практика показала, что очень часто ученики допускают неточности при вычислении последней цифры натурального числа. Данная тематика сама по себе довольно сложна, так как требует особой точности, внимательности и развитого логического мышления. Чтобы без проблем справиться с подобными заданиями, рекомендуем воспользоваться удобным онлайн-сервисом «Школково». На нашем сайте вы найдете все необходимое для решений уравнений на нахождение последней ненулевой цифры числа и подтяните знания в смежных тематиках.

Сдавайте Единый государственный экзамен на «отлично» вместе со «Школково»!

Наш образовательный портал построен таким образом, чтобы выпускнику было максимально удобно готовиться к итоговой аттестации. Сначала ученик обращается к разделу «Теоретическая справка»: вспоминает правила решения уравнений, освежает в памяти важные формулы, которые помогают найти последнюю цифру числа. После этого переходит в «Каталоги», где находит множество задач различных уровней сложности. Если с каким-либо упражнением возникают затруднения, его можно перенести в «Избранное», чтобы вернуться к нему позже и решить самостоятельно либо с помощью преподавателя.

Специалисты «Школково» собрали, систематизировали и изложили материалы по теме в максимально простой и понятной форме. Таким образом большое количество информации усваивается в короткие сроки. Школьники смогут выполнять даже те задания, которые совсем недавно вызывали у них большие трудности, в том числе и те, где необходимо указать несколько решений.

Чтобы занятия проходили максимально эффективно, рекомендуем начать с наиболее легких примеров. Если они не вызвали сложностей, не теряйте время - переходите к задачам среднего уровня, так вы определите свои слабые стороны, сделаете упор на наиболее сложные для вас задания и добьетесь больших результатов. После ежедневных занятий в течение 1―2 недель вы сможете за пару минут вывести даже последнюю цифру числа Пи. Данное задание достаточно часто встречается в ЕГЭ по математике.

База упражнений на нашем портале постоянно обновляется и дополняется преподавателями с большим стажем. У школьников есть отличная возможность каждый день получать совершенно новые задания, а не зацикливаться на одних и тех же примерах, как зачастую приходится делать при повторении по школьному учебнику.

Начните занятия на сайте «Школково» уже сегодня, и результат не заставит себя ждать!

Обучение на нашем портале доступно всем желающим. Чтобы вы отслеживали свой прогресс и получали новые задания, созданные персонально для вас, зарегистрируйтесь в системе. Желаем вам удачной подготовки!

Полезно запомнить следующее правило: последняя цифра произведения двух чисел равна последней цифре произведения последних цифр сомножителей. В частности, последняя цифра произведения зависит только от последних цифр сомножителей.

а) Начнём выписывать последние цифры степеней двойки. На каждом шаге будем умножать результат предыдущего шага на 2 и, если получается двузначное число, брать его последнюю цифру. Получим: 2 1 = 2, 2 4 =4, 2 3 =8, 2 4 = 16 → 6, 2 5 → 6·2 = 12 → 2, 2 6 → 2· 2 = 4, 2 7 → 4· 2 = 8, 2 8 → 8· 2 = 16 → 6, и т. д. Заметим, что последние цифры чередуются в такой последовательности: 2, 4, 8, 6, 2, 4, 8, 6... При этом последняя цифра степени зависит от того, с каким остатком показатель степени делится на 4. В частности, всегда, когда показатель степени делится на 4 без остатка (как 4, 8, 100), последняя цифра степени равна 6.

б) Последняя цифра числа 549 49 совпадает с последней цифрой числа 9 49 . Последние цифры степеней девятки чередуются так: 9, 1, 9, 1, 9, 1... То есть если показатель степени нечётный, степень оканчивается на 9. Значит, и число 9 49 , и исходное число 549 49 оканчиваются на 9.

в) Последняя цифра числа 2013 2013 совпадает с последней цифрой числа 3 2013 . Последние цифры степеней тройки чередуются так: 3, 9, 7, 1, 3, 9, 7, 1... То есть последняя цифра степени зависит от того, с каким остатком показатель степени делится на 4. В частности, всегда, когда показатель степени делится на 4 с остатком 1 (как 1, 5, 2013), последняя цифра степени равна 3. А значит, и последняя цифра числа 2013 2013 равна 3.

В книге рекордов Гиннеса написано, что наибольшее известное простое число равно (23021 337 − 1). Не опечатка ли это?

Решение. При каждой операции из числа 10 х + у получается число 3 х + у (здесь y — последняя цифра исходного числа). Разность этих чисел равна 10 x + y − (3 x + y) = 7 х и значит, делится на 7. Значит, при каждом шаге делимость числа на 7 сохраняется (исходное число, очевидно, делилось на 7), а само число уменьшается. Поскольку операцию можно проделывать с любым натуральным числом, в котором больше одной цифры, мы рано или поздно получим однозначное число, кратное 7.

 Top